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ABSTRACT 
 

This paper gives an overview of industrial applications of real-time knowledge based expert systems (KBESs) 

for process control.  After a brief overview of the features of a KBES useful in process control, several case 

studies are reviewed.  The lessons learned are summarized.   

 

BACKGROUND 
 

Knowledge-based  systems overview  

Artificial Intelligence (AI) techniques include rule-based expert systems and object-oriented systems.  The 

emphasis is declarative representation:  separating the description (the knowledge) of a process, from the 

subsequent analysis of that knowledge by an inference engine.  The knowledge is thus made more explicit, 

visible, and analyzable, instead of  being hidden inside of procedural programming code.  Good expert system 

tools are generally based on an object-oriented paradigm, and we call them knowledge-based (KB) systems, or 

knowledge-based expert systems (KBESs).  Overviews of  KBESs are available elsewhere, so we will focus on 

aspects of particular relevance to control systems.   

 

A general overview of object-oriented programming is given by Stefik & Bobrow (1986).  Overviews of KB 

techniques in process control are given by Stephanopolous (1990), and Bristol  (1989).  Arzen (1990) gives an 

overview of the issues for unifying control systems and knowledge-based systems.  Descriptions of the 

features needed in a KBES for real-time control are given by Rowan(1989), Moore and others (1988), Moore, 

Stanley & Rosenof (1990), and Hoffman, Stanley & Hawkinson (1989). 

 

KBES and control technologies are complementary, rather than competitive technologies.  Control technology 

generally emphasizes quantitative processing, while KBESs integrate both qualitative and quantitative 

processing.  A KBES provides a general framework for integrating technologies as diverse as control design 

and operation, neural nets, rule-based systems, symbolic cause/effect models, logic networks, differential 

equation solving, and scheduling algorithms.   

 

Some features of Knowledge-Based Expert Systems useful for control systems  

Current online industrial applications are generally built within shells, which package a combination of tools.  

Different KBES shells may include some of the following features useful for online control applications:  



• objects with attributes 

• class hierarchy for objects, with inheritance of properties and behavior 

• associative knowledge, relating objects in the form of connections and relations 

• representation and manipulation of objects and connections graphically 

• rules and associated inference engine 

• procedures 

• analytic knowledge, such as functions, formulas, and differential equation simulation 

• real-time features such as a task scheduler for concurrent operations, time stamping and validity intervals for 

variables, history-keeping, and data interfaces 

• interactive development and run-time environment 

 

Not all shells contain all these features.  This paper is based mainly on experiences of users of G2, a real-time 

KBES shell which does include all these features.   

 

The emphasis in a KBES is in building up descriptions, or knowledge, independent of the subsequent use of 

that knowledge in multiple applications.  For instance, the developer specifies the types of objects in the plant, 

and specifies conditions which might correspond to a fault.  The easy buildup of this declarative knowledge, 

combined with the available graphical interfaces, encourages a rapid prototyping and iterative refinement 

approach to software development.   

 

Users often use a graphics-oriented KBESs to create a graphical language by defining the behaviors of objects 

and connections.  For instance, a system based on AND and OR gates is really a graphical language.  

Continuous control system engineers generally think in terms of data flow languages consisting of processing 

blocks and signals, as described earlier.  GRAFCET (Baker and others, 1987) is an example of a graphical 

language for sequential control which can be built in a KBES (Årzen, 1990).  In GRAFCET, objects 

representing actions are connected by directed arcs specifying sequential or concurrent execution.  

 

In general, users of KBESs are representing almost everything as objects.  It fits well with the way they think.  

 

GENERAL ROLES OF A KBES IN CONTROL  
 

Some roles of expert systems in process control have been outlined by Stephanopolous (1990).  An overview 

of some current and expected applications is given by Rehbein and others (1990).  Rosenof (1990) has 

summarized some roles for KBESs in batch process automation. Many of the online applications span more 

than one of the areas defined below, exploiting the usefulness of a KBES as a general framework:   

 

The following are proven successful application areas for a KBES:  

• Fault diagnosis:  detection, root cause analysis, repetitive problem recognition 

• Supervisory control 

• Complex control schemes 

• Recovery from extreme conditions 

• Emergency shutdown  

• Heuristic optimization, e.g., debottlenecking 

• Startup or shutdown monitoring 

• Batch phase transition detection and subsequent control mode switching 

• Process and control performance monitoring 

• Statistical Process Control (SPC) 

• Real Time Quality Management (combination of the above) 

• Online "smart" operator and troubleshooting manual  

• Sequential or batch control 

• Control system validation  

• Object-oriented simulation of processes and control systems  



 

The following KBES application areas are actively being developed and tested by industry:   

• Scheduling 

• Operator training, with real-time simulation 

• Tank farm management 

 

The following applications are likely candidates for future industrial use:  

• Predictive maintenance 

• Process validation 

• Intelligent supervision of adaptive control, model identification, parameter estimation, data reconciliation, 

and state estimation 

• Automated design of control systems (and implementation) 

• Intelligent supervision for optimization   

 

In the area of adaptive control, Åstrom, Anton & Årzen (1986) describe an experimental expert sytem 

implementation of an autotuner. Foxboro sells an autotuning control system implemented in hardware, 

trademarked as the EXACT™ controller (Bristol, 1989).  It has been successfully applied in numerous 

applications.  It is advertised as an expert system, capturing extensive knowledge on controller tuning.  In that 

sense, it is acting as an expert system.  However, the controller does not appear to have been implemented 

using expert system techniques.  It is described by Bristol as "10-15 pages of FORTRAN or C, illegible to 

outsiders (even to the concept inventor!)".  It appears that the usual advantages of simple, readable, 

maintainable representation in the form of rules and objects in a KBES were not achieved.  EXACT has 

proven the existence of a market for intelligent low-level control and adaptive control for at least some 

applications.  Major issues besides robustness may well be packaging and cost. 

 

CASE STUDIES OF INDUSTRIAL APPLICATIONS 
 

Monitoring and closed-loop control of salt-water desalination by Reliable Water 

The Reliable Water Company builds unattended salt water desalination plants.  The plants are typically 

installed in remote locations where no operator is routinely on site. Technicians are often not convienently 

available on site, either, so the system has to be very reliable, and diagnose itself when it breaks down.  The 

system requires more control than the typical reverse osmosis plant, due to a unique energy-recovery 

technique.  There is a significant amount of sequential control, and some continuous control.  

  

The knowledge-based control system is at the forefront of automation practice (Yankee Conveyer, 1989).  The 

plant only runs with the expert system:  there are no "manual" operations, manual valves, or independent dials 

or gauges.  All sensors are computer inputs, and all manipulators are computer-controlled. In addition to 

control, the KBES also includes maintenance management, inventory management, performance monitoring, 

and repair advice.   

 

The input sensors include pressure, flow, pH, salinity, conductivity, switch position, and various equipment 

statuses.  Outputs include valves, pump power, circuit breakers and similar equipment.  A typical system has 

about 50 analog and digital inputs, and 50 outputs.  The system has about 350 variables, 700 rules, 470 

procedures, 70 functions. and about 150 generic formulas. 

 

The KBES is constructed hierarchically.  There are rules at a high level, such as "if water is too-salty then ...",  

which trigger lower-level rules.  There are explicit high level goal rules built in to consider the effects of 

control actions, and to prevent damage.  The highest level goal is "make drinking water".  This decomposition 

makes it easy to enter high-level rules without worrying about the operational details of the low-level systems.   

 

To eliminate the need for operator intervention, a significant portion of the system is dedicated to recovering 

automatically from extreme conditions.  For instance, the system can recover from a temporary power failure 



caused by lightning.  First, the plant is shut down properly.  The system finds the tripped circuit breaker, 

physically resets it, checks all the equipment, and then restarts the plant.  

 

The system detects failures, and substitutes redundant equipment where possible.  Sensors are routinely 

calibrated and cross-checked.  When a sensor fails, a calculated value is substituted instead.  The system runs 

the plant at partial capacity, or in some suboptimal mode if necessary.   

 

The knowledge-based approach makes the plant more reliable and less costly to operate.  The complete 

knowledge-based system took about five man-years to implement.  Plants are in successful operation 

throughout the world.   

 

Plant experiences in monitoring, simulation and control at DuPont 

DuPont has numerous online KBESs for diagnostics, data reconciliation, scheduling, optimization and control 

(Rowan, 1989;  Rehbein and others, 1990; Schreiber, 1991).  They have also combined object-oriented 

modelling with object-oriented expert systems.  

 

FALCON, DuPont's first online expert system, performed fault diagnosis system at a nylon plant in Victoria, 

Texas (Rowan, 1987,1988).  It was a forward-chaining rule-based system written in custom LISP code, 

containing about 650 specific rules, and based on 31 input variables.   

 

An extensive dynamic simulation was built to test the expert system during development, and verify the fault 

detection for at least 25 likely faults.  Faults included failures of pumps, heat exchanger fouling, off-gas flow 

restriction, and control system component failures.  Only single failures were successfully diagnosed. 

 

Diagnosis based on quantitative, first principles models was combined with empirical, "heuristic" plant-

specific knowledge and historical trend data. Overall redundancy of data combined with models was essential, 

so that basic techniques associated with data reconciliation could be applied to detect the faulty sensors.  For 

instance, the imbalance of material flow about one or more process nodes helped pinpoint measurement 

failures, as shown in Mah, Stanley & Downing (1976).  

 

Fault diagnosis during abnormal extremely dynamic operations such as startup was difficult.  A significant 

effort was put into making the system robust enough to recognize that the plant was in a safety interlock mode, 

or even shut down.  This alarm filtering was necessary to avoid erroneous or nuisance advice.   

 

The diagnostic system detected 5 out of 6 actual plant faults of the defined types during the first months of 

operation.  However, at first it also made nuisance announcements due to noise, sensor errors, and spurious 

process conditions.  It was necesssary to suppress the announcement of faults until they had been repeatedly 

detected.  To handle problems of noise and slow sensor drift, it was necessary to introduce filtering on the 

sensors, and reason based on both raw and filtered data.  In particular, slow thermocouple drift led to many 

false announcements due to errors in the energy balance calculations.  It was necessary to periodically calculate 

a filtered bias term for each energy balance to help avoid these errors.  This model residual bias approach to 

dealing with slow sensor drift was developed by Stanley (1982).  Engineering judgement was required to tune 

the system to avoid nuisance announcements, but still detect real faults fast enough for operators to prevent a 

dangerous condition.    

 

DuPont was encouraged by the technical success of the project, and implemented other online systems based 

on G2.  The custom-coding approach of FALCON in LISP was not economically justified, due to high 

development and maintenance costs.  

  

DuPont has described a newer KBES, based on G2, installed at the same nylon plant. The incentives for this 

quality control system are uniformity of actions across all operations, reduction in product variability, 

improvement in adipic acid purity, reduction in waste generation, and ISO 9000 (safety) certification.  The 



KBES supervisory control includes the balancing of process flows and inventories, and controlling stream 

compositions.  This system is an integral part of the plant's quality managment effort.  An important part of the 

system is the graphical interface, which automatically displays easy-to-follow response plans.  

 

This system has been running online since March, 1990.  The system has improved production capability and 

quality control, and reduced losses.  Also, system has proved to be a valuable tool for technology transfer.  

That is, the expert system helps the operators understand complex process behavior and improves the 

uniformity of their actions.  The KBES distributes expertise, so that the best operator and engineering team is 

in effect always available, and always vigilant.  (Normal estimated expert availability is 15% in a round-the-

clock plant operation.)  Due to the current success, the system is being further expanded during 1991.   

  

DuPont is not widely publicizing details of its current online systems, as it considers them to be a competitive 

advantage.  They have stated that they "routinely" see returns on investment as high as 10 to 1 (Rehbein and 

others, 1990; Rowan, 1989).  The economic impact is typically in improved yield, quality, and utilities.   

 

Diagnostics at the Monsanto's Krummrich Chemical Plant  

Monsanto has multiple online installations.  One major success was in building a generic library for fault 

diagnosis at the Krummrich chemical plant (Mertz, 1990; Spang Robinson Report, 1989; Rehbein et al, 1990).  

Portions of the library have been installed at other sites.  The rules focus on low-level failures such as sensor or 

valve failures, which are common to all plants.  The application takes advantage of the class hierarchy and 

direct analysis of the process schematic.  The system also includes online troubleshooting documentation. 

 

The system performs transmitter and control loop validation, analyzing sensor and control loops.  Sensors and 

valves are the weakest links in the overall control process.  Quantitative material and energy balance models 

are used as part of this validation, leading to the same sensitivity to noise and drift experienced by DuPont.  

Some failures, such as frozen valves or plugged tank vents, cause no immediate alarm, but can be detected.  

The application at the Krummrich Plant analyzed 200 of 475 sensors, and 100 out of 135 control loops.  The 

rules for flow, level, amperes, and control loop validation were all done generically.  The logic for pressure 

and temperature had to be customized beyond the generic library in some cases.   

 

Noise was a identified as a problem at this installation, leading to false alarms.  One technique used is delay of 

any operator notification of problems until a fault conclusion has been reached a number of times, as done at 

DuPont.    

 

A major goal is to find faults either not detectable by the operator and control system, or find them sooner.  By 

finding the minor problems quickly, you can prevent their effects from propagating and becoming major 

problems.  In addition to finding the fault, the system gives assistance during the upset. Monsanto internal 

studies had shown that operators' inattention to small problems (not generating immediate alarms, such as 

stuck valves) often led to major process upsets.  The operators also had trouble understanding process data and 

responding properly during major process upsets.   

 

The benefits are safety, quality control, environmental performance, on-stream time, and the ability to safely 

accomplish further optimization.  Monsanto's own evaluation was that process interruptions cost $500,000 

each year, and that half of that is saved by the expert system.   

 

The system at the Krummrich plant has been online continuously since September, 1989, shut down only a few 

times due to power failures.   The first project paid for itself and other systems have been installed.  

 

Monitoring, simulation, and operator-in-the-loop control in a paper mill - EPAK   

EPAK provides decision support to the operators in a paper mill run by Norske Skog AS of Norway (Yeager, 

1990;  Opdahl, 1989).  The highly-automated plant is Norway's largest paper mill.  The system is a supervisory 

control system, with a human in the loop to approve the control changes.   



 

EPAK, built on top of G2, is available from ABB AFORA of Finland.  The system assesses paper quality, 

recommends control actions, and uses simulation to predict the effects of the recommended actions.  The 

incentives are to improve quality, minimizing variations between shifts.  The initial system took about 6 

months to build, although the commercialization continued after that time.   

 

There are three types of knowledge captured in the system:  "assessment knowledge", "correction knowledge", 

and "process knowledge".  The assessment knowledge is used to symbolically classify the quality as high, low, 

or OK.  The correction knowledge recommends the control actions, accounting for interactions.  Rules are 

used to select among combinations of directional changes (steps) in one to three control parameters, balanced 

to avoid unwanted side effects.  Some numerical modelling is used.  In short, the correction knowledge maps 

quality changes into appropriate manipulated variable changes.  The inverse of this knowledge is called 

process knowledge.  It predicts the impact of manipulated variable changes on the product qualities.  Process 

knowledge also includes limits on manipulated variables and various calculations.   

 

Some of the process knowledge is represented as a "Quality Matrix".  It is used for online simulation to predict 

states and the effects of changes.  This is a linear model with time delays, with different coefficients for each 

paper grade.  The knowledge is provided both by engineers and by operators.  The quality matrix is directly 

accessible as a set of graphical objects and connections, for inspection and change.  There is a set of input 

objects representing up to 10 control parameters, and a set of output objects representing quality parameters.  

The connections between the objects have an attribute containing the linear effect coefficients.  Other process 

knowledge is represented by rules and functions.   

 

The possible (multivariable) control actions are stored as individual objects. These objects have attributes 

containing the name of the quality property, the direction of the desired change, the applicable control 

parameters, and the direction of change of those control parameters.  The actions are prioritized, and the 

priorities can be changed online. Priorities are changed for instance, for each customer, or when constraints are 

violated, or to reflect changes in business goals, or to reflect new insights.  Rules decide which of these objects 

will generate a manipulated variable change.   

 

The control actions frequently include iteration:  a small change is made, to see what the effects will be.  If the 

process is improved as result of those changes, further steps are taken.  The system tracks all changes made 

and predicts their effects, so that control actions are based on predicted deviations from targets. By iterating, 

the system uses both correction knowledge and process knowledge.  The simulation presents the predicted 

effects to the operator.  The operator can run a "what if" analysis to simulate the effects of his own proposed 

actions.  This prediction is very popular with the plant operators, and was a major contributer in building 

confidence and obtaining operator acceptance.  

 

Operators' proficiency improved, and more timely decisions are made.  By speeding decisions, out-of-

specification product per unit of production is reduced.  Economies are achieved, because the tighter quality 

control allowed closer approaches to constraints.  For instance, use of expensive chemical pulp is held to a 

minimum.  Due to better color control, downgraded and repulped paper has been reduced.  The system became 

the most knowledgeable source of information on quality as related to paper machine operation.  Quality-

related decisions are now always as good as the best operator's decisions.  A framework is in place for 

continued addition of operating knowledge as well.   

 

Planning and closed-loop control of composite curing at Alcoa  

An object-oriented, rule-based control scheme was found to be very effective for controlling the curing of 

composite materials in autoclaves and presses (Manzini & Roehl, 1990).  Parts are created with woven 

graphite fibers and various epoxy resins.  The parts must be mixed following a recipe, then heated under 

pressure to stimulate the chemical reaction, and then cooled when the reaction is done.  During the chemical 

reaction, heat is generated as well.  Significant gradients of temperature across the thicknesses of the material 



can occur, which must be carefully controlled to maintain strength of the final material.  Traditional open-loop 

ramp-and-soak controls can compensate for thermal lags, but this leads to excessive production times.   

 

The cure state is inferred indirectly from measurements of temperature and pressure, and dielectric properties.  

As a resin cures, it progresses through a sequence of distinct states, each of which requires a different type of 

control.  A major problem is detecting the state transitions, so that the control strategies can be switched.  

Detecting the state transitions requires sensor values and estimates of their derivatives.  There is a strong 

incentive to recognize the state transitions and minimize the processing time.  The process monitoring system 

is an integral part of this control scheme.   

 

The control of the part manufacturing is based on its geometry and material, the process equipment used, and 

constraints on non-uniform temperature distribution.  Each part can have a variety of different features, such as 

thick and thin regions, further complicating the control.  Extreme flexibility is needed, due to low production 

volumes, and large variations in the materials, part geometries, and processing rules.  Traditional control 

techniques have been inadequate for materials manufacturing of this type.  

 

A knowledge-based approach is used, which integrates a variety of expertise in the form of models, data, and 

heuristics.  Objects describe the parts, the status of the various portions of the parts, the process requirements, 

the behaviors of the resins, the processing equipment, and the sensors.  Connections between the objects are 

used to represent the physical relationships between the objects.  The class hierarchy with inheritance is used 

extensively to simplify specifications of equipment and sensor.  The class hierarchy with inheritance is also 

extremely useful in representing the processing requirements and recipes of the resins, which fall in several 

broad categories.   

 

Based on the complete set of requirements for the part, a plan for control of the manufacturing process is 

automatically developed using a set of rules which analyze all the information contained in the specification 

objects and connections.  The plan covers the complete phases of startup, running, and shutdown.  The system 

then makes the part, running on a 60-second cycle of data acquisition and control.   

 

The system is successful, with processing time savings of an average of 30% over the previous conventional 

open-loop  strategies.  

 

Waste incineration monitoring at 3M 

The KBES described by Kinoglu (1991) monitors a solid waste incinerator plant, including the following 

subprocesses:  combustion in a rotary kiln, steam generation, and pollution control.  The system makes 

recommendations such as cycle completions and shutdowns.  For instance, pressure drop trends of the energy 

recovery equipment are monitored to watch for metal build-up, which prompts a shutdown.  This system 

combines quantitative process and control models with expert system techniques.  The simulation portion of 

the system makes extensive use of the object-oriented style of modelling based on the plant schematic.  The 

operators or engineers can also use the simulation in a "what-if" mode to evaluate possible changes or 

enhancements.   

 

There is a significant variation in the unknown contents of each drum of waste material fed to the incenerator.  

So, part of the monitoring system estimates combustion properties of the drum contents, and then predicts via 

online simulation the emission levels at the precipitator and stack.  The system tells the operators how long a 

drum should be burned in the kiln (cycle time).  This system helps reduce the time spent on each drum, and 

also ensures adequate incineration.  By eliminating conservative, fixed cycle times, the overall plant capacity is 

effectively increased. 

 

The system is running online 24 hours a day.  The early online results of the system were very encouraging.  In 

particular, two accidents were averted in a fairly short time.  The system has been detecting problems and 

recommending actions much faster than previously possible, and also detecting problems indicated only by 



slowly-changing variables which were unnoticed by the operators.  Due to accident prevention and better 

selection of shutdown times, the system paid for itself in a short time.  The system is being expanded to model 

more of the plant, and to expand the advisory rules.  The system is being expanded to monitor the tank farm, 

and provide step-by-step instructions to the operators for their manual activities.  Closed-loop control of some 

parameters is anticipated by the end of the 1991.   

 

Closed-loop environmental control, analyzer control,  and monitoring at Biosphere II ( Space Biosphere 

Ventures) 

Biosphere II is a 3-acre closed system which can be completely sealed off from material exhange with the 

world.  8 people, plants, and animals will be sealed in the airtight greenhouse in Arizona, maintaining their 

own atmosphere for 2 years.  A variety of biomes, each with their own climate, are maintained. Knowledge-

based systems are being used in 4 major areas:  climate control, monitoring, analyzer sequencing control, and 

design simulation (Girard, 1990).  The heart of the system is a network of 6 computers with expert systems 

sharing information for distributed control and monitoring, and exchanging data with other computers.   

 

Both control and monitoring of the environment are very critical. A breakdown in systems control and 

monitoring, leading to high temperatures, plant death, and a CO2 runaway,  could leave the environment 

uninhabitable in a day, ruining the efforts of many people at a cost of many millions of dollars.  Tight control 

is desired so that experiments can be run on the effects of the controlled variables.   

 

The KBES controls temperature, humidity, and air velocities.  The control problem is more difficult than in the 

case of office buildings, where the areas are physically separated and the target temperatures and humidities 

are roughly the same throughout the building.  Also, since the entire outside of the system is glass, variations 

in sunlight have a stronger effect.  Each biome requires different targets.  There are significant interactions 

between the biomes, because they are not isolated from each other.  The control system is distributed among 

several knowledge bases and computers, with feedback and feedforward controls outputting to low-level 

control hardware.    

 

The analyzer/sampler control uses a graphical, sequential control language developed in the KBES.  This 

flexible system coordinates the analyzer with automated sample location changes, and performs automatic 

calibration.   

 

At the time this paper is being written, the G2-based supervisory controls have not been tested, pending 

completion of the lower-level control hardware.  The control system KBES was implemented in about 6 man-

months.  The sequential control of the analyzer and its sampling system have been operational online for many 

months.  Its implementation took 1 - 2 man-months.  Portions of the monitoring systems needed before 

complete closure of Biosphere II have been in use.  That implementation took about 6 man-months.   

 

Fermentation reactor supervisory control at the University of Newcastle and MIT    

At the University of Newcastle upon Tyne (U.K.), knowledge-based systems have been built which span 

supervisory control, scheduling, and fault detection/diagnosis for fermentation reactor control.  (Aynsley and 

others, 1989, 1990;  Morris and others, 1991) 

 

Fermentation control is difficult because it is nonlinear, time-varying, and models are poor.  It is usually a 

batch process.  Measurements of living processes are mostly indirect, such off-gas analysis and mass 

balancing.  There are large measurement uncertainties.  There are many interacting variables, through different 

phases (fast growth vs. slow growth, etc.).   

 

The Newcastle KBES applies a set of rules to the online data to determine the current phase of operation 

(microbial growth).  The current phase then determines which other rule sets apply to operations within that 

phase. The system also checks for data consistency using overall redundancy of models and measurements.   

 



For the diagnostic portion of the KB, the hardware fault detection is fairly generic, while the "metabolic faults" 

are more specific to the organisms in the given fermentation.  In addition to diagnosis and growth phase 

determination, the knowledge-based system is responsible for feed scheduling, and modifications to the 

schedule in response to faults or other process changes.  The system determines the best time to terminate the 

fermentation and harvest the product.   

 

The initial control scheme was tested first on a dynamic simulation.  The system was also tested on offline 

industrial data, and detected a contaminated batch in only 17 hours, compared to the 75 hours it took people in 

the actual industrial plant.  Had the system been online at the time, a considerable saving in substrate feed 

costs and reactor time would have been achieved.   

 

The system currently supervises pilot-scale Bakers Yeast fermentations online at the university. An industrial 

application is now being developed.  Similar efforts are in progress at MIT's Bioprocess Engineering Center, 

and closed loop control has been operational.  Results of that work will be published.   

 

OTHER NOTEWORTHY APPLICATIONS 
 

Operator advice at an ISI Agroindustriale Sugar Company (Italy) sugar plant 

A KBES has been installed online at an ISI Agroindustriale Sugar Company in Italy (Filippini et. al, 1990).  

The system advises operators in the following areas:  evaluation of regulatory control loops, prevention of 

malfunctions, standardization of quality and yield, and optimization.  The system has been developed by 3 

engineers over a three month period.  It has been well-received, and is considered an essential tool in plant 

management.  It is being expanded.   

 

Closed-loop supervisory control of a concentrator at Noranda 

Noranda built a knowledge-based closed loop supervisory control system for Brunswick Mining & Smelting, 

controlling a concentrator (Northern Miner Magazine, 1990).  The system reads and/or changes the values of 

over 500 instrument signals.  The first application was online dynamic material balance control.  The control is 

based directly on analyzing the process schematic.  The system paid for itself in the first four months of 

operation.   

 

Distributed Control System configuration validation at Simons Eastern 

The flexibility of modelling within a graphics-oriented KBES was used to develop a system to test distributed 

control systems (Anderson, 1990).  The system simulates a process and validates the DCS configuration.  The 

system has successfully validated several DCSs at Simons' staging facility.  It is being expanded to use more 

"AI" capabilities to automate more of the overall test procedure.  For instance, the system will plan process 

disturbance tests and analyze the controller behavior.   

 

Space Shuttle monitoring at NASA's Johnson Space Center  

NASA uses knowledge-based systems to monitor the Space Shuttle at the Johnson Space Center (Muratore, 

Heindel and others, 1990; Pohle, 1991; Montgomery,1991; Girard, 1990).  The goal is to improve the speed 

and quality of Mission Control decisions.  There are about 5 different applications online, and another 5 are in 

progress.  One expert system monitors the status of 38 primary Reaction Control Jets on the shuttle.  The 

system can detect current problems, predict potential problems, and simulate the consequences. The KBES 

replaces a 20-page procedure manual, and does necessary calculations to speed decisions by 20 - 45 minutes.  

Another application is the Booster Flight Controller expert.  It also can detect failures and simulate different 

scenarios.  During ascent or entry, the flight controller has less than 20 seconds to detect a problem, analyze it, 

and take action.  The KBES has demonstrated the ability to correctly identify all known booster failure 

scenarious, and simulate additional potential ones, in a few seconds.  Typical applications have taken two to 

six months to build.  

 



Noteworthy projects in progress 

HALDRIS is an online expert system for supervisory control and diagnosis of aluminum smelters at Hydro 

Aluminun, Norway (Rolland et al, 1991; Fjellheim, 1990).  After operating in simulated mode , the prototype 

was put online at the plant in November, 1990.  Full scale implementation and validation will be completed in 

1991. Average yields are expected to be increased by .5%.   

 

The OECD Halden Reactor Project is a European nuclear safety project.  The SAS-II KBES for safety 

assessment and post-trip guidance (Nilsen, 1990) is currently running with a detailed simulation.  Plant 

installation is in progress at the Forsmark-2 power plant in Sweden. The knowledge is based on physical 

model and logic diagrams, consisting of interconnected objects such as AND gates, OR gates, and NOT gates, 

which then drive alarm objects.  The gate objects and interconnections define a graphical language replacing 

the equivalent rules.   

 

An online emergency procedure management system has been developed for a nuclear power plant in Belgium 

(Foret, 1990).  The project took 3 months, and was tested with operators using an accurate online training 

simulator.  Operator training was found to take just a few minutes.   

 

As part of the Advanced Solid Rocket Motors (ASRM) program, Lockheed is building a pilot plant and then a 

full-scale plant for solid fuel propellant for NASA.  Lockheed has been using an object-oriented simulation of 

the plant and control system for the design phase (Braunstein, Brown and others, 1989).  Implementation will 

use the same tools.  That is, the controls developing using the knowledge-based tool are tested on the 

simulation, and then will be used in the plant when it is built.  The complete implementation integrates process 

simulation, process control, monitoring, and fault diagnosis.  The plant model is based on the process 

schematic.  Simulation statements and rules analyze the schematic.   

 

 

GENERAL LESSONS LEARNED  
 

Real-time KBESs are robust enough to have succeeded in numerous applications, including closed loop 

control.   

The summary of applications at DuPont, Reliable Water, Alcoa, University of Newcastle, and others makes 

this clear.  As time goes on, more of the systems will become closed loop.  Many of the current systems 

already occupy a "grey" area between open and closed loop control:  the control goal is closed-loop, but an 

operator is in the feedback loop, and operators routinely approve the recommendations.  These current systems 

are doing control -- the human acts as a random deadtime in the loop.   

 

Also, many of the open-loop applications will migrate to closed loop someday, as people build up confidence, 

following the earlier pattern of migration of computer open-loop monitoring to closed-loop control.  ABB's 

EPAK may be example of that.  

 

Except in the Reliable Water case, there is generally a DCS or PLC at the lowest control level in KBES 

applications.  These systems perform the simple tasks adequately, run on higher-reliability hardware than most 

computer systems, and are already in place before most of the KBES projects are started.   

 

Significant benefits are derived in areas complementary to conventional controls, such as diagnosis, 

quality management, and abnormal operation 

Significant benefits have been achieved, as shown in the case studies.  Most of the credits are in the same areas 

as good process control,  e.g., process repeatability, quality improvement, achieving best demonstratable 

operation, shorter batch time, lower waste or energy costs, and avoidance of accidents.  However, the reasons 

for the benefits often complement those of process control, since they are often derived during periods of 

unusual operation, or from better planning of the normal control operations.  Diagnostics are needed as part of 

the overall control system to catch major problems and then disable the fragile, "normal" control systems 



which only handle normal operations.  Quality problems can be thought of as faults -- they are economic 

faults, just less severe than safety problems.  Diagnostic techniques  typically also are used in batch control 

systems to detect or plan the transition from one operating phase to another. These were major issues in the 

composite curing process and the fermentation control systems.   

 

Significant benefits are derived from productivity in development 

While the earliest expert systems were major efforts, a graphics-oriented real-time KBES now can significantly 

shorten development time vs. conventional coding.  The ability to rapidly prototype and get user input is a 

major benefit.  While any of these systems could be implemented in conventional code, it would be difficult, 

more time-consuming and error-prone, and harder to maintain.   

 

Graphics-oriented KBESs are an integrating technology 

Due to their high-level ability to represent, manipulate, and display knowledge in various forms, graphics-

oriented KBESs can be used as a tool to integrate other techniques.  One KB representation can be used for 

multiple purposes.  This was especially apparent for Reliable Water and Alcoa.  Work is under way at various 

locations using a KBES to integrate such diverse technologies as neural networks, fault trees, databases, and 

expert system rules.   

 

A KBES can help fill the "CIM gap" between process control and planning & scheduling.  For instance, once 

the KBES has a representation of the plant schematic, the recipes, and the processing sequence and estimated 

processing times, that same representation can be used both for planning purposes, and then to carry out the 

sequential control (as was done to some extent at Alcoa).  The key is that the plant and product information is 

represented in a way independent of the application.  In a continuous plant, a hybrid system can decide when it 

is time to do an emergency shutdowns, and carry out the shutdown.  In a batch process, the hybrid system can 

detect the end of one phase of operation, and switch control schemes for the next phase of operation.   

 

System integration is a major issue 

A significant portion of the overall effort is in systems integration.  Tools which build in extensive support for 

real-time data interfacing save significant development effort.   

 

Maintainability is a major issue 

The FALCON system, and similar early systems were not maintainable, and are no longer used.  Maintenance 

is a major issue at plants, because they are always being modified, and related computer systems need to 

evolve with it. Modern KBES shells provide a better framework.  Systems must be changeable in a natural way 

by the users, not just AI developers.   

 

KBESs specialized for real-time use are needed for process control applications 

Earlier attempts to extend the traditional static expert system shells, or to code a system from the beginning, 

were generally interesting learning experiences.  These mostly ineffective attempts were generally driven 

periodically by batches of data placed in files.   

 

However, for the dynamic industrial environment, these approaches generally proved too slow, too difficult to 

be economically justified or maintainable (as in the case of FALCON), and often too unreliable.  A specialized 

real-time KBES uses an asynchronous processing model for data acquisition and task execution within the 

expert system.  The necessary features for history-keeping, time stamping, and so on, are provided.  Also, early 

LISP-based systems, without special memory-management provisions to prevent garbage collection, could 

suffer seemingly-random pauses during garbage collection (memory reclamation), unacceptable for real-time 

operation.  A real-time KBES does not need to garbage collect at run time.  

 

KBESs reduce the gaps between specification, implementation, and run-time 

KBESs encourage declarative representation of the information needed for design of a system, such as objects 

with attributes which are used to build models.  The process schematic itself is part of the design basis, and 



can be used directly at run-time.  The design procedure itself can be automated.  For instance, goals and 

subgoals can be represented as objects suitable for deriving control strategies.  Domain-specific heuristics on 

selection of controlled and manipulated variables can be explicitly represented as rules or objects.  This type of 

high-level representation was a key to the Alcoa and Reliable Water examples.  

 

In an integrated package, many of the objects (such as the process schematic) used by the designer can be used 

by the end user.  Status indications via color are useful to both the designer and end-user.  A programmer 

separate from the designer and end user is generally not needed.  A separate software package for design and 

run-time use are not needed.   

 

KBESs complement control systems by dealing with diagnosis and abnormal conditions  

KBESs provide new tools which extend & complement existing techniques, rather than replacing them.  This 

is natural, because a KBES emphasizes qualitative, symbolic methodologies rather than quantitative 

methodologies.  It emphasizes representation of concepts at a high level of abstraction or multiple levels, 

instead of the low-level plant models.   

 

As an example, conventional continuous control schemes usually depend implicitly or explicitly a small-signal 

system model linearized near some nominal value. The multivariable controls normally assume that all sensors 

are good.  These controls work well during normal operation.  However, in case of a process upset, sensor 

failure, or other fault, many control systems are put in manual mode by the operators so that more extreme 

corrections can be made directly.  The normal models and controls break down during the extreme operation.  

There, the more effective models or actions are likely to be simpler, but based on first principles or else on 

heuristics.  These alternate controls are easier to build in a KBES than in conventional systems.  

 

KBESs also augment batch control systems, by providing better recognition of the transitions between 

different operating phases.   

 

KBESs complement SPC techniques by earlier problem detection and root cause analysis, achieving 

Real-Time Quality Management  

SPC tools are sensitive detectors of problems.  However, they offer no guidance as to the root causes of 

problems, or how to correct the problems.  This is a fundamental limitation, because SPC techniques cannot 

capture process model knowledge and use it.  A KBES can apply SPC to detect problems, and integrate a 

diagnostic system to pinpoint the cause of the problems.  Thus, the broader problem of "maintaining product 

quality" can be addressed through a combination of SPC techniques, diagnostic techniques, and conventional 

control systems during normal operation.  This broader approach to "Real Time Quality Management"  has 

been successfully applied by DuPont and others.   

 

Pure SPC systems also require the users to wait until faults have propagated and repeatedly caused off-spec 

products.  By building in process knowledge, faults can be detected and corrected long before SPC techniques 

recognize a product problem.  Diagnostic techniques implemented in a KBES can use SPC techniques as 

sensitive detectors of problems, but also provide a broader framework for building in the knowledge to 

determine the causes of problems and correct them.  Monsanto provided a classic motivating example similar 

to the following:  if a valve sticks, a reflux drum will empty, ending reflux to a distillation tower, finally 

causing product to go out of specification half an hour after the fault.  Diagnostics could detect the stuck valve 

in much less than a minute.  

 

Organizational and implementation issues  

Some of the factors in successful applications are highlighted by Rehbein et al (1990).  Factors contributing to 

overall success are generally similar to those for process control projects, such as end-user and expert 

involvement, management commitment, and so on.   

 



Basic software engineering and project management techniques are still needed, although the process usually 

follows more of a prototyping and iterative refinement approach with extensive end-user review.   

 

Simulation is useful both for model-based reasoning and for testing  

 

LESSONS LEARNED IN KNOWLEDGE REPRESENTATION 
 

Graphical specification of knowledge is effective 

Users like developing graphical problem-specification languages.  For example, Exxon is building a toolkit 

based on logic networks made up of AND gates, OR gates, and so on(Weber, 1991). The Halden project uses a 

similar approach, as does a nuclear plant monitoring system being developed in Japan.  The Alcoa application, 

EPAK and others made extensive use of relationships between objects as a form of graphical specification 

language.  Many of the applications, e.g., at Monsanto, derive the needed information directly from process 

schematics.   

 

Generic knowledge libraries shortening development time 

Many users (e.g., Monsanto, ABB, and others) are building libraries which can be reapplied at different sites, 

based on analyzing a process schematic.  This is especially applicable in diagnostics, where low-level failures 

in valves and sensors are essentially the same in all plants.  This results in rapid transfer of technology and 

development, uniformity, and maintainability.  The knowledge libraries speed applications at the first site as 

well, because much of the configuration for the entire site is for repetitive elements such as valves and 

controllers.   

 

Symbolic and numerical filtering, and evidence combination techniques for managing noise and 

uncertainty are important 

Event and trend detection, with their associated upstream models and filtering, provide the interface between 

the continuous, external world, and the higher-level, usually symbolic states in the knowledge based system.  

Since most industrial real-time expert systems are primarily forward-chaining, the processing load depends on 

when the system inputs have changed enough to justify propagating new information (Washington & Hayes-

Roth, 1989).   

 

To reduce the impact of noise, you can filter heavily and accept the phase lag in many cases, since a fast 

feedback loop is not within the application.  Nonlinear techniques such as various forms of hysteresis based on 

state or time, for either analog or symbolic data, can be extremely useful, even though they might not be 

normally be used in closed-loop feedback control.  

 

In addition to conventional filtering techniques, other techniques can be quite useful.  Conversion from 

numerical values to symbolic values of "high", "low", or "OK", significantly reduces the number of state 

changes in subsequent processing.  Various symbolic forms of filtering, such as latching and event counting 

have a significant role to play as well.  Monsanto and DuPont both found it necessary to delay fault alarms 

until the condition had been true for a period based on time or event counts.  Forward chaining itself is often 

configured to only propagate truly new state information, and this provides a form of filtering.   

 

The importance of filtering of various types has been reported for most of the applications.  Filtering is 

considered an important part of the toolkit being developed by Exxon (Weber, 1991).  SPC techniques are now 

being thought of as a form of filtering for input to the rest of the expert system.  This has been the case in the 

DuPont, Exxon, and others.   

 

Industry has only begun to experiment with various models of evidence combination and fuzzy logic, which 

can also help address these problems.  These techniques will become more prominent in future applications  

 



Quantitative information and models are often needed 

A significant amount of knowledge has been abstracted by engineers into mathematical models.  The best 

systems are hybrids of qualititative and quantitative techniques.  This is intuitive, because the system is taking 

advantage of more knowledge about the process.  Furthermore, in most of these systems, the simulation is 

specified in an object-oriented form.  The user often creates graphical objects with attributes, and the library 

equations directly derive the necessary mathematical representation from that structure 

 

Diagnostic systems based on deviations from quantitative models tend to be very sensitive to faults of all 

types, even when operation is close to normal.  The sensitivity of model-based approaches is good for 

significantly increasing sensitivity to real faults.  Also, the time to recognize those faults is shortened, because 

they are detected within the normal operating range, before significant harm is caused by the fault.   

 

Approaches based on deviations from models (residuals) also have the advantage of detecting some faults 

which were not even anticipated, but which affect the variables in the model equations.  (In that case, the 

system can alert the operators, although not necessarily pinpoint the exact cause).  A good example would be 

material and energy balance equations which do not explicitly account for an actual leak or pipe break, since 

they are low-probability events.  However, if a pipe does break, the resulting large material and energy balance 

equation residuals will quickly indicate a problem, even if the logic does not explicitly derive a specific 

conclusion beyond the initial problem detection.  However, minor problems such as mild sensor drift, mild 

process upsets, slightly larger than normal noise, or modelling error can all lead to incorrect detection of faults.  

The developer must pay extra attention to filtering in this case.  

 

Most useful industrial systems involving continuous variables are hybrids of the model-based and pure 

symbolic approaches.  The models can generate residuals, which then feed into the symbolic logic.    

 

Knowledge-based systems provide good repositories for process technology, improving the uniformity of 

operator responses 

This has been a major finding of the DuPont projects and EPAK, for example.  Since the embedded knowledge 

is visible to the operators, is testable and generally can be queried, the operators can use it as a learning aid, 

and can continue to refine it.  Whether the operators take manual actions based on the system, or allow the 

system to directly manipulate the process, the results are higher uniformity of control actions.   

 

 

USER AND DEVELOPER INTERFACE LESSONS LEARNED  
 

Operators can use a KBES 

Operators can indeed learn to use a system based on windows, graphical objects, a mouse, and menus.  Some 

had previously expressed doubt about this, just as skeptics once doubted that operators could use a CRT and 

keyboard rather than panel boards.   

 

User and end-user interface is important, and well-supported by KBES 

Good end-user interfaces are important, since the results are often advice.  The user wants to be able to 

understand the recommendation and the current process condition as quickly as possible.   

 

The development of graphics tied closely to the objects has led to much progress in user interfaces.  In fact, 

modern "direct manipulation" graphics packages are generally object-oriented, so that one overall technology 

now spans the needs of control, simulation, and graphics interfaces.   

 

There is now less of a gap between representation schemes for developers and end-users.  If the developer is 

specifying the system in terms of graphical objects directly understandable by the end-user, it is natural to try 

to make the objects perform duties for both development and end-use.  This approach has major advantages for 

the developer.  For instance, debugging is significantly simplified.  Also, the end users themselves can 



recognize mistakes quite easily, for instance, in specification of the plant schematic.  This is in great contrast to 

the early days when developers worked in assembly language or FORTRAN, totally unreadable by the end-

user.  The KB becomes a repository of common information available for users with different needs.   

 

A factor in success is that the operator is always given an opportunity to override the advice or actions of the 

expert system, even in closed-loop applications.  The operator in the DuPont applications also has the ability to 

enter a comment indicating the reason for rejecting the advice.  The information is periodically reviewed by 

the local engineer, and the knowledge base is updated as needed.  In general, it has been found that the expert 

system learns indirectly from the operators, and that the operators learn from the expert system as a tutor as 

well.   

 

Users would like ranking of possible faults, or some numerical measure of probability 

This has been highlighted in the DuPont experience, and is built in to the Exxon toolkit.  

 

 

CONCLUSIONS 
 

Online KBESs are making significant contributions to process control and management.  They are 

economically justified.  The applications and benefits are often in areas which complement traditional process 

control technology, for instance, in handling abnormal situations, and in overall quality management.  The 

KBES integrates new techniques with conventional controls.   

 

Many lessons have been learned from the industrial experiences, such as the importance of filtering, the 

importance of integrating SPC tools, and the need for integration of quantitative models.  To capture the 

benefits of these lessons, so that future implementations will be simpler, Gensym had developed a product, the 

Diagnostic Assistant™ (Stanley, Finch, & Fraleigh, 1991).  The product is a primarily a graphical language.  It 

combines both the data flow and sequential control aspects of other graphical languages.     
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