NEURAL NETWORKS FOR FAULT
DIAGNOSIS BASED ON MODEL
ERRORS OR DATA RECONCILIATION

Greg M. Stanley* - Gensym Corporation

Presented at: ISA 93 (Instrument Society of America), Chicago, IL, USA, Sept. 19-24, 1993.

* Contact the author at:
http://gregstanleyandassociates.com/contactinfo/contactinfo.htm




CENTRAL PROBLEM ADDRESSED

* Explore several possible mechanisms for fault
detection using combinations of several
technologies:

- Neural networks
- Traditional models, often based on first principles
Detect faults based on deviations from models
- Data reconciliation

Additional technique built upon traditional models

* Each technology has something to offer, and
limitations

* General analysis and case study with hydraulic
systems



Some fault diagnosis schemes
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I. NEURAL NETWORKS BACKGROUND

Neural Networks for nonlinear modeling

e Neural networks are nonlinear, multivariable
models built from a set of input/output data

- Training phase - "learn" model from the data,
given pairs of input & output data arrays ("training
set")

Analogy: building regression model from data

- Run-time phase - use the model with new input
array to predict the output array

Analogy: using the regression model with new inputs
* Result is a nonlinear "black box" model

Analogy: linear models for regression, DMC, typical
controller design methods are all "black box"
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Neural Networks roles

* Functional approximation

- Approximate any mapping of input to output
data

Think of it as multivariable interpolation

- Used for interpolation, control, simulation, etc.,
in place of other types of models

- Nonlinear modeling in the absence of first-
principles models is a special strength of neural
nets

* Classification (pattern matching)



Neural networks for classification, pattern
matching, fault detection

* Input "features" are selected and collected into a
vector

examples: temperatures, qualities, statuses

* Bach possible feature pattern belongs to exactly one
of n "classes"

example: fault detection, where "classes" are normal,
fault x, faultvy, ...

* There is a NN output for each of the n possible
classes

* In training, 1 is applied to the correct output for the
input class, 0 to the other outputs

* At runtime, a new input is presented, and an output
near 1 indicates membership in that class

* A special strength of neural nets



Neural Net for classification at run time
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Neural Networks vs. other techniques

* Complements traditional modelling, rule-based
systems, optimization, regression, interpolation,
and control

* Focus is on nonlinear systems, vs. traditional linear
techniques that may be more efficient for linear
systems

- very few systems are truly linear, especially under
fault or other extreme conditions

- linearization for traditional methods often applies only
within small operating regions

* First principles (simulation) models can be worked
in by pre-processing or post-processing

e.g., model the differences from first-principles models
with a neural net

* Neural nets can model static or dynamic systems

e.q., feed delayed inputs as well as current inputs



Applications areas for neural nets

* Dynamic and static process modeling
* Quality prediction & control

* Nonlinear and adaptive control

* Inferential "soft" sensing

* Fault detection and diagnosis

* Multivariable pattern recognition

* Data validation and rectification

* Time series prediction

* Process optimization

* Automated decision-making



nBaCkpropagation Network (BPN)"

* The "standard" network, widely-used
One of 4 available in NeurOn-Line

* Named after a particular training technique
Somewhat of a misnomer, but in common use

* Implies layered structure of nodes and connections
* usually 3 layers (input, hidden, output)

* "feedforward" - runtime data propagates from
input through output with no feedback

e Information transmitted via connections with
weights

* Each node takes weighted sum of inputs, then may
apply a function to introduce nonlinearity

* Usually the nonlinear function is sigmoidal (S-

shaped)

Any NuerOn-Line layer can apply linear or sigmoidal
functions



NeurQn-Line BPN Configuration
Configuring. BPMN-45

Number of Existing Layers:

# Nodes Tor Layer

Transfer Funciion

Metwork Architecture

3 Change No. of Layers
11 13 17 nane nane
Linear Sigrnaid Linear nane nane

File Cperations

Apply new architecture settings

Adjust Weights Sessipn Control

Pathhame: |/uaerslgmaliaa’bpndidat | Randomize Weights

Cone

Load

Save

Jiggle Weights . . .




Training and applying a neural net

1) Choose inputs & outputs
2) Acquire input/output training data

3) Train the network

)
)
)
4) Validate the network
5) Apply the network

)

6) Periodic retraining for adaptation



Training & applying (1) : Choose inputs &
outputs
* Avoid irrelevant inputs if possible

* Functional relationship between inputs & outputs
should exist

* Inputs can be calculated, model residuals, etc.



Training & applying (2): Acquire input/output
training data
* Data should "cover" space of interest

* Neural nets, like other empirical models,
extrapolate poorly

* Extrapolation may be uncovered during
validation

* Radial Basis Function nets can warn about
extrapolation at run time; backpropagation nets
can't

* Quality & quantity of data determine quality of
result

* Signal to noise ratio important

* Large data sets reduce variance of predictions if
a functional relationship exists

* Validation techniques in NeurOn-Line can
quantify network performance



Training & applying (3): Train the network

* Nonlinear parameter estimation

* Generally least-squares fit to training set (sum of
squares of prediction errors over the data)

* NeurOn-Line uses standard optimization methods,
rather than earlier backpropagation techniques -
faster

e NeurOn-Line has shortcut methods for Radial Basis
Function methods



NeurOn-Line Fit-Tester Configuration

Configuring: FIT-TESTER-RMS-1

Goodness of Fit Medtric:

/3\ 1. Root Mean Squared Error
(functional approximation)

& Fraction misclassified (classification)

3. Probability-based error
(density estimation by rho nets)

Done




NeurOn-Line BPN-Trainer Configuration

Configuring: BPN-TRAINER-BFGS

Maximum [terations: | 100

D Apply new maximum from above

Training Method:

VAL Conjugate Gradients (Fletcher-Reeves)

& Conjugate Gradients (Polak-Ribiere)
4@ 3: BFGS (Broyden-Fletcher-Goldfarb-Shanno)

4 DFP (Davidon-Fletcher-Powell)

Print Training Progress to Background Window?

V4 Yes ’6\ Mo




Training & applying (4): Validate the network

* Number of parameters to be estimated by the
training technique is related to the number of
layers, nodes & connections

* The number of adjustable parameters (weights)
must be chosen by the user or by an automated
technique

like choosing the model order in control, or the order of
a polynomial in curve fitting

* Too many parameters: overfitting, no
"generalization"

like fitting quadratic polynomial to 3 points

* Too few parameters: underfitting, too much
information lost

like using a linear curve fit when quadratic is really
needed

* Want to achieve the right level of generalization

* Cross-validation techniques separate "testing" data
and "training" data to choose architecture



Cross-Validation

* Pick an architecture (typically, # of hidden nodes)
* Evaluate the architecture

* Split data randomly into training and testing
subsets

* Train the network using only the training data
subset - training minimizes the training error

* Evaluate network prediction quality only over
the testing subset only - "testing error"

* Repeat multiple times with different random
split of data, and average the results of the testing
error

Similar approaches exist to split the data n ways

* Repeat, choose the architecture with the lowest
testing error

Typically at a minimum between underfitting &
overfitting

* Train with the final architecture, using all the data



Cross validation - high-level view
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Some details of cross-validation

Control

Data path

set

Training
slibset .,

i

50y

.

5 di

HE

Data
lvider

i |

T

Testing

Trainer

=

sl bset

Training

l

Tester

het

performance

—
Test

performance

Neural

[TE=

ek

=

Run-time un-time
input outpUt
vector yestor



Training & applying (5): Apply the network &
retrain as needed
* Weights, architecture fixed while running
* Cases requiring extrapolation should be flagged

* Further data acquisition & periodic retraining &
adaptation

* NeurOn-Line provides support for maintaining
data set

- Adding new, novel cases
- Forgetting old cases when newer ones are better
- Rejecting outliers

- Filtering or other signal pre-processing



Recognizing NeurOn-Line applications

* Ditficult-to-formulate models needed for system
improvement

- Poorly-understood systems
- Lack of experts
- Nonlinearities

* Data available

* Functional relationship exists between inputs &
outputs

e NeurOn-Line current limitations
- Data collection, network evaluation 1 second

- No hard limits on size, best performance for
input dimension < 100, number of examples < 1000



NeurOn-Line RBFN Configuration
Configuring: RBFN3

Network Architecture

Number of nodes for each layer:
Input Hidden Qutput

11 30 17

Unit Overlap: |1

D Apply new architecture settings

Hidden unit shapes: Bias:
/6\ Spherical 4\ On
N4 Elliptical 4 Off
File Operations Session Control

Pathname: |/usersigmsiisa/rbinrec3n.dat

Done

Load Save




NeurOn-Line

* G2-based neural network package for online
applications

* Support for maintaining set of training data and
building an adaptive neural network model,
recognizing novelty

* Real-time pre-processing of data (filtering, feature
calculations)

* Support for run-time use of the NN model
* Various network types supported
- standard feedforward, sigmoidal
- radial basis functions. ellipsoidal basis functions

- Principal Component Analysis preprocessing
option

- Autoassociative nets for nonlinear principal
components analysis

- tho nets
* Training via optimization methods
* Cross-validation for testing against "overfitting"

* Graphical language for development



- GDA-based for signal processing, responding to
events, sequential control



NeurOn-Line architecture

* G2 is the overall developer & end user environment

* Integrated with G2 and GDA (Gensym Diagnostic
Assistant)

* Numerically-intensive training done in external C
program

* Communication via remote procedure calls and file
transfer



Why not just use a neural network?

* Doesn't take advantage of process knowledge

- Network has to learn more, may generalize
improperly

- Danger of extrapolation outside of training data

- May be difficult/time consuming to "cover" the
possible operating regimes

- A lot of testing may be required to build
confidence in the network

- Minor plant changes or operating regime changes
may require extensive retraining and retesting

- Many operating statuses change, leading to a
large number of inputs to the net besides sensors

e.g., controller statuses, parallel equipment statuses

* A model or partial model with a wide range of
validity may be easily available, or generated

- Validity may go well beyond available training
data

e.g., material, enerqy & pressure balances, valve &
pump curves, controller models



II. MODEL RESIDUAL ANALYSIS

MODEL BREIIDUAL APFROACH:
Case of inputfoutput model
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ALGEBRAIC MCDEL RESIDUAL EXAMPLE
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Functional form:

f1-12=10
fz+13-14=10

Resulting residual calculations:

r1 =11 - {2
r2 = 12 + {3 - 14




DYN&MIC WMODEL REIIDUAL EXAMPLES

1 L

i fe i3
| ? r%_\i i
& = cross-sectional area i
4 7

Functional form: Input-output form;
ArdLfdt - 1 + 2 = 0 f2 =1 - A% dl/di
fgd-f3=10 f3 = 12
f3 +fd -5 =10 fo=13+14

Resulting residual calculations to feed events,

K = ALt - 1 + 2 (Either approximate dL/dt
or integrate equation

rd = 12 - 13 to solve for level change

r3 = 3 + f4 - b and average or filter the flows)




No errors:

residuals: 0 0 0 0 0
flows: 100 100 100 100 100 100

T




Sensor 2 biased high by 10:

residuals: -10

flows: 100

110

10

0 0 0

100 100 100 100

N

e

Sensor 3 biased high by 10:

residuals: 0 10 10 0 0
flows: 100 100 110 100 100 100
i“) (F)
I Il




Leak of magnitude 10
between sensors 2 and 3:

residuals: 0 10 0 0 0
flows: 100 100 90 90 a0

I




Model residuals form patterns for input to the
NN

Residuals Fault class

(0, 0, 0, 0,0) : Normal operation

(-b, b, 0, 0, 0): flow 2 biased high by amount b
(0,-b, b, 0, 0) : flow 3 biased high by amount b
(

0,-b, 0, 0, 0) :leak, magnitude b, between flow &
flow 3



Advantages of residuals

* Simple to compute, no iteration required, no
convergence problems

* Models can be "partial", incomplete models - they
are just information in the form of constraints, not
a complete causal model

Same true for data reconciliation

* Unmodeled faults will still generate residuals
highlighting a fault, even though the NN will be
unable to correctly classify the cause of the non-
normal operation

Same true for data reconciliation



Why not just use model residuals as NN
inputs?

* Residuals are all "local" to one equation

* Residuals arbitrarily depend on which balances are
chosen

In above example, first flow is never compared to last
flow, yet that is a perfectly valid comparison/balance.
Only adjacent flows are compared.

* Network has to learn all the "global" interactions
- Network may not generalize properly

* Data reconciliation fully accounts for the
interactions, using ALL of the model equations,
instead of just comparing adjacent sensors

* Data reconciliation allows you to specity
measurement noise standard deviations, so
network doesn't have to learn it



III. DATA RECONCILIATION

Data Reconciliation

* Want best estimates of variables in a system with
measurements, consistent with some algebraic
models

- Combining measurement information,
measurement noise properties (variances), and
model information

Analogy to Kalman Filter in dynamic systems, although
usually no "process noise" is modeled, just
"measurement noise"

* Traditionally associated mainly with mass & energy
balances

* Associated "gross error detection" based on tests of
model residuals or measurement adjustments -
should be random



Data Reconciliation mainly reduces effect of
instrument biases

* Uses algebraic models: steady state assumption,
with a few tricks

- Change in tank levels treated as equivalent to
flow measurement

- Other dynamic extensions exist

* Plant measurements must be averaged for time
period consistent with steady-state assumption

- Typical 4 hours - 1 day
- High frequency noise filtered out

- Leaves only steady state error (bias) or very low
frequencies



Data Reconciliation is least-squares error
minimization

* Minimize "adjustments" to raw data based on their
assumed variances - weighted sum of squares of
adjustments

* Minimization subject to constraint that the balances
are satisfied exactly

* Nonlinear if the algebraic constraints are nonlinear



Data Reconciliation - mathematical
formulation

The system

measurements: z=h(x) +v

constraints: g(x) =0

v is the measurement noise, with covariance matrix R
R is usually diagonal

Diagonal elements are measurement variances (square of
std. dev.)

The least-squares problem

Find best estimate x as solution to the problem:

'R (z-h(x))

minimize over x: (z - h(x)

subject to: g(x) =0

Special case solutions exist for linear constraints and
measurements



No errors:

residuals: 0 0 0 0 0
flows: 100 100 100 100 100 100

BN AEN

reconciled flows:
100 100 100 100 100 100

reconciliation adjustments:
0 0 0 0 0 0




Sensor 2 biased high by 12

residuals:

flows:
I__

100

-12 12 0 0 0
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Z2 100 100 100

L

=d

Ll L

100

4

reconciled flows:
102 102 102 102

reconciliation adjustments:
10 2 2 2
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Sensor 3 biased high by 12

residuals; 0 12 12 0 0
flows: 100 100 112 100 100 100

RNA A AN

reconciled flows:
102 102 102 102 102 102

reconciliation adjustments:
2 2 -10 2 2 2




Leak of magnitude 12
between sensors 2 and 3:

residuals; 0 12 0 0 0
flows: 100 100 88 88 88

NN TN

reconciled flows:
02 02 92 92 02 02

reconciliation adjustments:
-8 -8 4 4 4 4




Some fault diagnosis schemes

Faults
Measurements 0/1

Measurements Residuals Faults

m m m -

Measurements Adjustments Faults

"Innovation"

Measurements history Faults

0/1

Equations

"Innovation"” = error in measurement prediction



IV. THE SYSTEM

Overall process of building fault diagnosis
system
* Build a configurable simulator

* Select features to be used for input to the neural
network

- Sensors, valve positions

- Model equation residuals

- Other calculations

- Data Reconciliation measurement adjustments

- Filtering, averaging, other signal processing as
needed

* User the simulator to generate cases - a training
data set

- Include sensor bias cases as faults
- Add random noise to sensors
- Randomly vary the inputs

* Train & validate the network (classification
problem)

e Run-time use - use same features on real data



Overview of the water grid model

* Graphically-configured hydraulic network, as in
municipal water grid

* Generation of model equations from schematic
- Fixed pressures at sources or sinks

- Pressure/flow models of pumps, valves, orifice
meters, pipes, junctions

- Conservation of mass

- Analogous to Kirchoff voltage & current laws, with
device equations

- Generate matrices for linearization when desired
* Algebraic equations only

- Tanks not considered, although this is a
straightforward extension



The system

* G2-based schematic analyzer generates linear or
nonlinear equations, sets up linear or nonlinear
data reconciliation

* Equations solved by IMSL/IDL (Wave Advantage)
nonlinear equation-solver

* Nonlinear data reconciliation solved by IMSL/IDL
optimizers

* Case generation for NeurOn-Line (neural network)

- G2 Generates cases of various sensor failures,
simulating using above models

- G2 outputs patterns of model residuals or data
reconciliation adjustments to file for training

* NeurOn-Line does training, runs networks



IMSL/IDL (Wave Advantage) interface to G2

* Wave Advantage = IMSL/IDL, similar to MATLAB

* G2 sends commands to Wave Advantage command
line interpreter as ASCII text strings - G2 looks like
a user to Wave Advantage

* Optionally, G2 can generate files for compilation by
Wave Advantage, triggered by command line
input to Wave Advantage

* Results come back from IMSL/IDL in files



Software roles

I. G2

* Coordination of entire system
* Overall developer and user interface
* Model representation

* Schematic analyzer to generate equations from
schematic

* Case generation
* Running NeurOn-Line

Calls separate C program for training (transparent to
user)

II. IMSL/IDL (now PV-WAVE)

* Solution of model equations (linear & nonlinear
equation solver)

* Solution of data reconciliation optimization
problem

* Specialized 3D plots for visualization



V. RESULTS

Case studies

e "Raw" features were 8 measurements, 3 valve
positions

* Failures simulated were high & low biases for
SeNnsors

* Thus, 16 failure modes plus 1 normal mode - 17
classes

* Sample pressures & valve positions automatically
generated

e Random measurement noise - uniform within 3 std.
dev.



Conclusions

* Noise useful to force generalization, avoid
numerical problems, avoid having to use small #
nodes

* Too much noise harmful - need too many cases

* Cross validation would be essential in any NN
application

* Scaling data important (scaling block does this
automatically)

* Large number of outliers reduce classification
accuracy, but a few only lead to excess, useless
nodes

* Remember that some simulators can fail to
converge sometimes, leading to outliers

* During case generation, check for outliers with
equation residuals (outliers not obvious with
reconciled data due to smearing, without more
elaborate multivariate statistical tests)

* Data reconciliation step adds complexity,
computing time

* Radial Basis Function nets (RBFN) train faster



* RBEN have their own built-in error analysis to
avoid extrapolation

* Models themselves handle extrapolation which NN
couldn't be trusted to handle - (residual or Data
Rec. approach)

* Hard to train RBFN with reconciled data and small
biases (vs. noise), probably due to overlap of
classes in clustering step

e When the sensor noise is small vs. biases:
- Reconciled data worked better

- numerical problems occurred more with non-
reconciled cases

* Either model-based technique has the major
advantage of extrapolating beyond training data,
and better results for a given number of cases



