NEURAL NETWORKS FOR FAULT
DIAGNOSIS BASED ON MODEL
ERRORS OR DATA RECONCILIATION

Greg M. Stanley* - Gensym Corporation

Presented at: ISA 93 (Instrument Society of America), Chicago, IL, USA, Sept. 19-24, 1993.

* Contact the author at:
http://gregstanleyandassociates.com/contactinfo/contactinfo.htm

CENTRAL PROBLEM ADDRESSED

* Explore several possible mechanisms for fault
detection using combinations of several
technologies:

- Neural networks
- Traditional models, often based on first principles
Detect faults based on deviations from models
- Data reconciliation

Additional technique built upon traditional models

* Each technology has something to offer, and
limitations

* General analysis and case study with hydraulic
systems

Some fault diagnosis schemes

Faults
Measurements 0/1

Measurements Residuals Faults

m m m -

Measurements Adjustments Faults

"Innovation"

Measurements history Faults

0/1

Equations

"Innovation"” = error in measurement prediction

NEURAL NETWORKS FOR FAULT
DIAGNOSIS BASED ON MODEL
ERRORS OR DATA RECONCILIATION

I. Neural networks background

II. Model residual analysis

ITI. Data Reconciliation

IV. System model

V. Results

I. NEURAL NETWORKS BACKGROUND

Neural Networks for nonlinear modeling

e Neural networks are nonlinear, multivariable
models built from a set of input/output data

- Training phase - "learn" model from the data,
given pairs of input & output data arrays ("training
set")

Analogy: building regression model from data

- Run-time phase - use the model with new input
array to predict the output array

Analogy: using the regression model with new inputs
* Result is a nonlinear "black box" model

Analogy: linear models for regression, DMC, typical
controller design methods are all "black box"

Basic Neural Net elements

Data
set .,

R

Trainer
"o —p

X

-
Training
performance

Neural
net

e

Run-time Run-time
input output
vector vecior

Neural Networks roles

* Functional approximation

- Approximate any mapping of input to output
data

Think of it as multivariable interpolation

- Used for interpolation, control, simulation, etc.,
in place of other types of models

- Nonlinear modeling in the absence of first-
principles models is a special strength of neural
nets

* Classification (pattern matching)

Neural networks for classification, pattern
matching, fault detection

* Input "features" are selected and collected into a
vector

examples: temperatures, qualities, statuses

* Bach possible feature pattern belongs to exactly one
of n "classes"

example: fault detection, where "classes" are normal,
fault x, faultvy, ...

* There is a NN output for each of the n possible
classes

* In training, 1 is applied to the correct output for the
input class, 0 to the other outputs

* At runtime, a new input is presented, and an output
near 1 indicates membership in that class

* A special strength of neural nets

Neural Net for classification at run time

Network
outputs
Run-time (1 = fault)
inputs — 0
Scalarizer]
Eli\fectnnzer : ,,|7_ 7,999
B_T':g tE o
E ; ==K
B ;l 10 \% E.m
Bj <15
. 0.0z
[— - 1]
Neura _
net = .H_Tl-b 0 3
Classifier
(HBFN) 0.999 Gutpu'['

Maximum activation

Neural Networks vs. other techniques

* Complements traditional modelling, rule-based
systems, optimization, regression, interpolation,
and control

* Focus is on nonlinear systems, vs. traditional linear
techniques that may be more efficient for linear
systems

- very few systems are truly linear, especially under
fault or other extreme conditions

- linearization for traditional methods often applies only
within small operating regions

* First principles (simulation) models can be worked
in by pre-processing or post-processing

e.g., model the differences from first-principles models
with a neural net

* Neural nets can model static or dynamic systems

e.q., feed delayed inputs as well as current inputs

Applications areas for neural nets

* Dynamic and static process modeling
* Quality prediction & control

* Nonlinear and adaptive control

* Inferential "soft" sensing

* Fault detection and diagnosis

* Multivariable pattern recognition

* Data validation and rectification

* Time series prediction

* Process optimization

* Automated decision-making

nBaCkpropagation Network (BPN)"

* The "standard" network, widely-used
One of 4 available in NeurOn-Line

* Named after a particular training technique
Somewhat of a misnomer, but in common use

* Implies layered structure of nodes and connections
* usually 3 layers (input, hidden, output)

* "feedforward" - runtime data propagates from
input through output with no feedback

e Information transmitted via connections with
weights

* Each node takes weighted sum of inputs, then may
apply a function to introduce nonlinearity

* Usually the nonlinear function is sigmoidal (S-

shaped)

Any NuerOn-Line layer can apply linear or sigmoidal
functions

NeurQn-Line BPN Configuration
Configuring. BPMN-45

Number of Existing Layers:

Nodes Tor Layer

Transfer Funciion

Metwork Architecture

3 Change No. of Layers
11 13 17 nane nane
Linear Sigrnaid Linear nane nane

File Cperations

Apply new architecture settings

Adjust Weights Sessipn Control

Pathhame: |/uaerslgmaliaa’bpndidat | Randomize Weights

Cone

Load

Save

Jiggle Weights . . .

Training and applying a neural net

1) Choose inputs & outputs
2) Acquire input/output training data

3) Train the network

)
)
)
4) Validate the network
5) Apply the network

)

6) Periodic retraining for adaptation

Training & applying (1) : Choose inputs &
outputs
* Avoid irrelevant inputs if possible

* Functional relationship between inputs & outputs
should exist

* Inputs can be calculated, model residuals, etc.

Training & applying (2): Acquire input/output
training data
* Data should "cover" space of interest

* Neural nets, like other empirical models,
extrapolate poorly

* Extrapolation may be uncovered during
validation

* Radial Basis Function nets can warn about
extrapolation at run time; backpropagation nets
can't

* Quality & quantity of data determine quality of
result

* Signal to noise ratio important

* Large data sets reduce variance of predictions if
a functional relationship exists

* Validation techniques in NeurOn-Line can
quantify network performance

Training & applying (3): Train the network

* Nonlinear parameter estimation

* Generally least-squares fit to training set (sum of
squares of prediction errors over the data)

* NeurOn-Line uses standard optimization methods,
rather than earlier backpropagation techniques -
faster

e NeurOn-Line has shortcut methods for Radial Basis
Function methods

NeurOn-Line Fit-Tester Configuration

Configuring: FIT-TESTER-RMS-1

Goodness of Fit Medtric:

/3\ 1. Root Mean Squared Error
(functional approximation)

& Fraction misclassified (classification)

3. Probability-based error
(density estimation by rho nets)

Done

NeurOn-Line BPN-Trainer Configuration

Configuring: BPN-TRAINER-BFGS

Maximum [terations: | 100

D Apply new maximum from above

Training Method:

VAL Conjugate Gradients (Fletcher-Reeves)

& Conjugate Gradients (Polak-Ribiere)
4@ 3: BFGS (Broyden-Fletcher-Goldfarb-Shanno)

4 DFP (Davidon-Fletcher-Powell)

Print Training Progress to Background Window?

V4 Yes ’6\ Mo

Training & applying (4): Validate the network

* Number of parameters to be estimated by the
training technique is related to the number of
layers, nodes & connections

* The number of adjustable parameters (weights)
must be chosen by the user or by an automated
technique

like choosing the model order in control, or the order of
a polynomial in curve fitting

* Too many parameters: overfitting, no
"generalization"

like fitting quadratic polynomial to 3 points

* Too few parameters: underfitting, too much
information lost

like using a linear curve fit when quadratic is really
needed

* Want to achieve the right level of generalization

* Cross-validation techniques separate "testing" data
and "training" data to choose architecture

Cross-Validation

* Pick an architecture (typically, # of hidden nodes)
* Evaluate the architecture

* Split data randomly into training and testing
subsets

* Train the network using only the training data
subset - training minimizes the training error

* Evaluate network prediction quality only over
the testing subset only - "testing error"

* Repeat multiple times with different random
split of data, and average the results of the testing
error

Similar approaches exist to split the data n ways

* Repeat, choose the architecture with the lowest
testing error

Typically at a minimum between underfitting &
overfitting

* Train with the final architecture, using all the data

Cross validation - high-level view

Data
set ..,
mma| [mn
HE
ENE EEN
Train
Control & 1€81 Training
path] performance
——
=
Test
performance
Neural
net
ig % gi :l
Run-time un-time
input output

vector vector

Some details of cross-validation

Control

Data path

set

Training
slibset .,

i

50y

.

5 di

HE

Data
lvider

i |

T

Testing

Trainer

=

sl bset

Training

l

Tester

het

performance

—
Test

performance

Neural

[TE=

ek

=

Run-time un-time
input outpUt
vector yestor

Training & applying (5): Apply the network &
retrain as needed
* Weights, architecture fixed while running
* Cases requiring extrapolation should be flagged

* Further data acquisition & periodic retraining &
adaptation

* NeurOn-Line provides support for maintaining
data set

- Adding new, novel cases
- Forgetting old cases when newer ones are better
- Rejecting outliers

- Filtering or other signal pre-processing

Recognizing NeurOn-Line applications

* Ditficult-to-formulate models needed for system
improvement

- Poorly-understood systems
- Lack of experts
- Nonlinearities

* Data available

* Functional relationship exists between inputs &
outputs

e NeurOn-Line current limitations
- Data collection, network evaluation 1 second

- No hard limits on size, best performance for
input dimension < 100, number of examples < 1000

NeurOn-Line RBFN Configuration
Configuring: RBFN3

Network Architecture

Number of nodes for each layer:
Input Hidden Qutput

11 30 17

Unit Overlap: |1

D Apply new architecture settings

Hidden unit shapes: Bias:
/6\ Spherical 4\ On
N4 Elliptical 4 Off
File Operations Session Control

Pathname: |/usersigmsiisa/rbinrec3n.dat

Done

Load Save

NeurOn-Line

* G2-based neural network package for online
applications

* Support for maintaining set of training data and
building an adaptive neural network model,
recognizing novelty

* Real-time pre-processing of data (filtering, feature
calculations)

* Support for run-time use of the NN model
* Various network types supported
- standard feedforward, sigmoidal
- radial basis functions. ellipsoidal basis functions

- Principal Component Analysis preprocessing
option

- Autoassociative nets for nonlinear principal
components analysis

- tho nets
* Training via optimization methods
* Cross-validation for testing against "overfitting"

* Graphical language for development

- GDA-based for signal processing, responding to
events, sequential control

NeurOn-Line architecture

* G2 is the overall developer & end user environment

* Integrated with G2 and GDA (Gensym Diagnostic
Assistant)

* Numerically-intensive training done in external C
program

* Communication via remote procedure calls and file
transfer

Why not just use a neural network?

* Doesn't take advantage of process knowledge

- Network has to learn more, may generalize
improperly

- Danger of extrapolation outside of training data

- May be difficult/time consuming to "cover" the
possible operating regimes

- A lot of testing may be required to build
confidence in the network

- Minor plant changes or operating regime changes
may require extensive retraining and retesting

- Many operating statuses change, leading to a
large number of inputs to the net besides sensors

e.g., controller statuses, parallel equipment statuses

* A model or partial model with a wide range of
validity may be easily available, or generated

- Validity may go well beyond available training
data

e.g., material, enerqy & pressure balances, valve &
pump curves, controller models

II. MODEL RESIDUAL ANALYSIS

MODEL BREIIDUAL APFROACH:
Case of inputfoutput model

Cutput
measurements

M od el

FALILT
DETECTION

Input
measurements

Cutput
predictions

WMODEL REIIOUAL APFROACH:
Case of functional form

W odel
heasurements BrFOF
Z (residual)

FALILT

DETECTION

Flant model form is
flx) = 0O

ALGEBRAIC MCDEL RESIDUAL EXAMPLE

17

f2

I

f4

{ ™
e

e

|-

Functional form:

f1-12=10
fz+13-14=10

Resulting residual calculations:

r1 =11 - {2
r2 = 12 + {3 - 14

DYN&MIC WMODEL REIIDUAL EXAMPLES

1 L

i fe i3
| ? r%_\i i
& = cross-sectional area i
4 7

Functional form: Input-output form;
ArdLfdt - 1 + 2 = 0 f2 =1 - A% dl/di
fgd-f3=10 f3 = 12
f3 +fd -5 =10 fo=13+14

Resulting residual calculations to feed events,

K = ALt - 1 + 2 (Either approximate dL/dt
or integrate equation

rd = 12 - 13 to solve for level change

r3 = 3 + f4 - b and average or filter the flows)

No errors:

residuals: 0 0 0 0 0
flows: 100 100 100 100 100 100

T

Sensor 2 biased high by 10:

residuals: -10

flows: 100

110

10

0 0 0

100 100 100 100

N

e

Sensor 3 biased high by 10:

residuals: 0 10 10 0 0
flows: 100 100 110 100 100 100
i“) (F)
I Il

Leak of magnitude 10
between sensors 2 and 3:

residuals: 0 10 0 0 0
flows: 100 100 90 90 a0

I

Model residuals form patterns for input to the
NN

Residuals Fault class

(0, 0, 0, 0,0) : Normal operation

(-b, b, 0, 0, 0): flow 2 biased high by amount b
(0,-b, b, 0, 0) : flow 3 biased high by amount b
(

0,-b, 0, 0, 0) :leak, magnitude b, between flow &
flow 3

Advantages of residuals

* Simple to compute, no iteration required, no
convergence problems

* Models can be "partial", incomplete models - they
are just information in the form of constraints, not
a complete causal model

Same true for data reconciliation

* Unmodeled faults will still generate residuals
highlighting a fault, even though the NN will be
unable to correctly classify the cause of the non-
normal operation

Same true for data reconciliation

Why not just use model residuals as NN
inputs?

* Residuals are all "local" to one equation

* Residuals arbitrarily depend on which balances are
chosen

In above example, first flow is never compared to last
flow, yet that is a perfectly valid comparison/balance.
Only adjacent flows are compared.

* Network has to learn all the "global" interactions
- Network may not generalize properly

* Data reconciliation fully accounts for the
interactions, using ALL of the model equations,
instead of just comparing adjacent sensors

* Data reconciliation allows you to specity
measurement noise standard deviations, so
network doesn't have to learn it

III. DATA RECONCILIATION

Data Reconciliation

* Want best estimates of variables in a system with
measurements, consistent with some algebraic
models

- Combining measurement information,
measurement noise properties (variances), and
model information

Analogy to Kalman Filter in dynamic systems, although
usually no "process noise" is modeled, just
"measurement noise"

* Traditionally associated mainly with mass & energy
balances

* Associated "gross error detection" based on tests of
model residuals or measurement adjustments -
should be random

Data Reconciliation mainly reduces effect of
instrument biases

* Uses algebraic models: steady state assumption,
with a few tricks

- Change in tank levels treated as equivalent to
flow measurement

- Other dynamic extensions exist

* Plant measurements must be averaged for time
period consistent with steady-state assumption

- Typical 4 hours - 1 day
- High frequency noise filtered out

- Leaves only steady state error (bias) or very low
frequencies

Data Reconciliation is least-squares error
minimization

* Minimize "adjustments" to raw data based on their
assumed variances - weighted sum of squares of
adjustments

* Minimization subject to constraint that the balances
are satisfied exactly

* Nonlinear if the algebraic constraints are nonlinear

Data Reconciliation - mathematical
formulation

The system

measurements: z=h(x) +v

constraints: g(x) =0

v is the measurement noise, with covariance matrix R
R is usually diagonal

Diagonal elements are measurement variances (square of
std. dev.)

The least-squares problem

Find best estimate x as solution to the problem:

'R (z-h(x))

minimize over x: (z - h(x)

subject to: g(x) =0

Special case solutions exist for linear constraints and
measurements

No errors:

residuals: 0 0 0 0 0
flows: 100 100 100 100 100 100

BN AEN

reconciled flows:
100 100 100 100 100 100

reconciliation adjustments:
0 0 0 0 0 0

Sensor 2 biased high by 12

residuals:

flows:
I__

100

-12 12 0 0 0
11

Z2 100 100 100

L

=d

Ll L

100

4

reconciled flows:
102 102 102 102

reconciliation adjustments:
10 2 2 2

102

2

102

Sensor 3 biased high by 12

residuals; 0 12 12 0 0
flows: 100 100 112 100 100 100

RNA A AN

reconciled flows:
102 102 102 102 102 102

reconciliation adjustments:
2 2 -10 2 2 2

Leak of magnitude 12
between sensors 2 and 3:

residuals; 0 12 0 0 0
flows: 100 100 88 88 88

NN TN

reconciled flows:
02 02 92 92 02 02

reconciliation adjustments:
-8 -8 4 4 4 4

Some fault diagnosis schemes

Faults
Measurements 0/1

Measurements Residuals Faults

m m m -

Measurements Adjustments Faults

"Innovation"

Measurements history Faults

0/1

Equations

"Innovation"” = error in measurement prediction

IV. THE SYSTEM

Overall process of building fault diagnosis
system
* Build a configurable simulator

* Select features to be used for input to the neural
network

- Sensors, valve positions

- Model equation residuals

- Other calculations

- Data Reconciliation measurement adjustments

- Filtering, averaging, other signal processing as
needed

* User the simulator to generate cases - a training
data set

- Include sensor bias cases as faults
- Add random noise to sensors
- Randomly vary the inputs

* Train & validate the network (classification
problem)

e Run-time use - use same features on real data

Overview of the water grid model

* Graphically-configured hydraulic network, as in
municipal water grid

* Generation of model equations from schematic
- Fixed pressures at sources or sinks

- Pressure/flow models of pumps, valves, orifice
meters, pipes, junctions

- Conservation of mass

- Analogous to Kirchoff voltage & current laws, with
device equations

- Generate matrices for linearization when desired
* Algebraic equations only

- Tanks not considered, although this is a
straightforward extension

The system

* G2-based schematic analyzer generates linear or
nonlinear equations, sets up linear or nonlinear
data reconciliation

* Equations solved by IMSL/IDL (Wave Advantage)
nonlinear equation-solver

* Nonlinear data reconciliation solved by IMSL/IDL
optimizers

* Case generation for NeurOn-Line (neural network)

- G2 Generates cases of various sensor failures,
simulating using above models

- G2 outputs patterns of model residuals or data
reconciliation adjustments to file for training

* NeurOn-Line does training, runs networks

IMSL/IDL (Wave Advantage) interface to G2

* Wave Advantage = IMSL/IDL, similar to MATLAB

* G2 sends commands to Wave Advantage command
line interpreter as ASCII text strings - G2 looks like
a user to Wave Advantage

* Optionally, G2 can generate files for compilation by
Wave Advantage, triggered by command line
input to Wave Advantage

* Results come back from IMSL/IDL in files

Software roles

I. G2

* Coordination of entire system
* Overall developer and user interface
* Model representation

* Schematic analyzer to generate equations from
schematic

* Case generation
* Running NeurOn-Line

Calls separate C program for training (transparent to
user)

II. IMSL/IDL (now PV-WAVE)

* Solution of model equations (linear & nonlinear
equation solver)

* Solution of data reconciliation optimization
problem

* Specialized 3D plots for visualization

V. RESULTS

Case studies

e "Raw" features were 8 measurements, 3 valve
positions

* Failures simulated were high & low biases for
SeNnsors

* Thus, 16 failure modes plus 1 normal mode - 17
classes

* Sample pressures & valve positions automatically
generated

e Random measurement noise - uniform within 3 std.
dev.

Conclusions

* Noise useful to force generalization, avoid
numerical problems, avoid having to use small #
nodes

* Too much noise harmful - need too many cases

* Cross validation would be essential in any NN
application

* Scaling data important (scaling block does this
automatically)

* Large number of outliers reduce classification
accuracy, but a few only lead to excess, useless
nodes

* Remember that some simulators can fail to
converge sometimes, leading to outliers

* During case generation, check for outliers with
equation residuals (outliers not obvious with
reconciled data due to smearing, without more
elaborate multivariate statistical tests)

* Data reconciliation step adds complexity,
computing time

* Radial Basis Function nets (RBFN) train faster

* RBEN have their own built-in error analysis to
avoid extrapolation

* Models themselves handle extrapolation which NN
couldn't be trusted to handle - (residual or Data
Rec. approach)

* Hard to train RBFN with reconciled data and small
biases (vs. noise), probably due to overlap of
classes in clustering step

e When the sensor noise is small vs. biases:
- Reconciled data worked better

- numerical problems occurred more with non-
reconciled cases

* Either model-based technique has the major
advantage of extrapolating beyond training data,
and better results for a given number of cases

