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CENTRAL PROBLEM ADDRESSED  

• Explore several possible mechanisms for fault 
detection using combinations of several 
technologies:   

  - Neural networks 

 - Traditional models, often based on first principles 

  Detect faults based on deviations from models 

 - Data reconciliation 

  Additional technique built upon traditional models 

• Each technology has something to offer, and 
limitations 

• General analysis and case study with hydraulic 
systems 
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NEURAL NETWORKS FOR FAULT 
DIAGNOSIS BASED ON MODEL 

ERRORS OR DATA RECONCILIATION 

I.  Neural networks background 

II.  Model residual analysis 

III.  Data Reconciliation 

IV.  System model 

V.  Results 



I.  NEURAL NETWORKS BACKGROUND 

Neural Networks for nonlinear modeling 

• Neural networks are nonlinear, multivariable 
models built from a set of input/output data 

 - Training phase - "learn" model from the data, 
given pairs of input & output data arrays ("training 
set")  

  Analogy: building regression model from data 

 - Run-time phase - use the model with new input 
array to predict the output array 

  Analogy: using the regression model with new inputs 

• Result is a nonlinear "black box" model 

 Analogy:  linear models for regression, DMC, typical 
controller design methods are all "black box" 



Basic Neural Net elements 

 

 



Neural Networks roles 

• Functional approximation 

  - Approximate any mapping of input to output 
data 

  Think of it as multivariable interpolation 

 - Used for interpolation, control, simulation, etc.,  
in place of other types of models 

 - Nonlinear modeling in the absence of first-
principles models is a special strength of neural 
nets 

• Classification (pattern matching) 



Neural networks for classification, pattern 
matching, fault detection 

• Input "features" are selected and collected into a 
vector  

 examples: temperatures, qualities, statuses 

• Each possible feature pattern belongs to exactly one 
of n "classes" 

 example:  fault detection, where "classes" are normal, 
fault x,  fault y, ... 

• There is a NN output for each of the n possible 
classes  

• In training, 1 is applied to the correct output for the 
input class, 0 to the other outputs 

• At runtime, a new input is presented, and an output 
near 1 indicates membership in that class 

• A special strength of neural nets 



Neural Net for classification at run time 

 

 



Neural Networks vs. other techniques 

• Complements traditional modelling, rule-based 
systems, optimization, regression, interpolation, 
and control 

• Focus is on nonlinear systems, vs. traditional linear 
techniques that may be more efficient for linear 
systems 

 - very few systems are truly linear, especially under 
fault or other extreme conditions 

 - linearization for traditional methods often applies only 
within small operating regions 

• First principles (simulation) models can be worked 
in by pre-processing or post-processing 

 e.g., model the differences from first-principles models 
with a neural net 

• Neural nets can model static or dynamic systems 

 e.g., feed delayed inputs as well as current inputs 



Applications areas for neural nets 

• Dynamic and static process modeling  

• Quality prediction & control 

• Nonlinear and adaptive control 

• Inferential "soft" sensing 

• Fault detection and diagnosis 

• Multivariable pattern recognition 

• Data validation and rectification 

• Time series prediction 

• Process optimization 

• Automated decision-making 



"Backpropagation Network (BPN)"  

• The "standard" network, widely-used 

 One of 4 available in NeurOn-Line 

• Named after a particular training technique 

 Somewhat of a misnomer, but in common use 

• Implies layered structure of nodes and connections 

 • usually 3 layers (input, hidden, output) 

 • "feedforward" - runtime data propagates from 
input through output with no feedback   

• Information transmitted via connections with 
weights 

• Each node takes weighted sum of inputs, then may 
apply a function to introduce nonlinearity 

• Usually the nonlinear function is sigmoidal (S-
shaped) 

 Any NuerOn-Line layer can apply linear or sigmoidal 
functions 



 



Training and applying a neural net   

(1) Choose inputs & outputs 

(2) Acquire input/output training data 

(3) Train the network  

(4) Validate the network 

(5) Apply the network 

(6) Periodic retraining for adaptation  



Training & applying (1) : Choose inputs & 
outputs 

• Avoid irrelevant inputs if possible 

• Functional relationship between inputs & outputs 
should exist 

• Inputs can be calculated, model residuals, etc.  



Training & applying (2):  Acquire input/output 
training data 

• Data should "cover" space of interest 

 • Neural nets, like other empirical models,  
extrapolate poorly 

 • Extrapolation may be uncovered during 
validation 

 • Radial Basis Function nets can warn about 
extrapolation at run time;  backpropagation nets 
can't 

• Quality & quantity of data determine quality of 
result  

 • Signal to noise ratio important 

 • Large data sets reduce variance of predictions if 
a functional relationship exists 

 • Validation techniques in NeurOn-Line can 
quantify network performance   



Training & applying (3):  Train the network  

• Nonlinear parameter estimation 

• Generally least-squares fit to training set (sum of 
squares of prediction errors over the data)   

• NeurOn-Line uses standard optimization methods, 
rather than earlier backpropagation techniques - 
faster 

• NeurOn-Line has shortcut methods for Radial Basis 
Function methods 



 

 



 



Training & applying (4):  Validate the network 

• Number of parameters to be estimated by the 
training technique is related to the number of 
layers, nodes & connections 

• The number of adjustable parameters (weights) 
must be chosen by the user or by an automated 
technique 

 like choosing the model order in control, or the order of  
a polynomial in curve fitting  

• Too many parameters:  overfitting, no 
"generalization" 

 like fitting quadratic polynomial to 3 points 

• Too few parameters:  underfitting, too much 
information lost 

 like using a linear curve fit when quadratic is really 
needed  

• Want to achieve the right level of generalization 

• Cross-validation techniques separate "testing" data 
and "training" data to choose architecture  



Cross-Validation 

• Pick an architecture (typically, # of hidden nodes)  

• Evaluate the architecture 

 • Split data randomly into training and testing 
subsets 

 • Train the network using only the training data 
subset - training minimizes the training error 

 • Evaluate network prediction quality only over 
the testing subset only - "testing error"    

 • Repeat multiple times with different random 
split of data, and average the results of the testing 
error 

 Similar approaches exist to split the data n ways 

• Repeat, choose the architecture with the lowest 
testing error  

 Typically at a minimum between underfitting & 
overfitting   

• Train with the final architecture, using all the data 



Cross validation - high-level view 

 
 



Some details of cross-validation 

 



Training & applying (5): Apply the network & 
retrain as needed 

• Weights, architecture fixed while running 

• Cases requiring extrapolation should be flagged 

• Further data acquisition & periodic retraining & 
adaptation 

• NeurOn-Line provides support for maintaining 
data set 

 - Adding new, novel cases 

 - Forgetting old cases when newer ones are better 

 - Rejecting outliers 

 - Filtering or other signal pre-processing 



Recognizing NeurOn-Line applications 

• Difficult-to-formulate models needed for system 
improvement 

 - Poorly-understood systems   

 - Lack of experts 

 - Nonlinearities 

• Data available  

• Functional relationship exists between inputs & 
outputs 

• NeurOn-Line current limitations 

 - Data collection, network evaluation 1 second 

 - No hard limits on size, best performance for 
input dimension < 100, number of examples < 1000 





NeurOn-Line 

• G2-based neural network package for online 
applications 

• Support for maintaining set of training data and 
building an adaptive neural network model, 
recognizing novelty 

• Real-time pre-processing of data (filtering, feature 
calculations) 

• Support for run-time use of the NN model 

• Various network types supported  

 - standard feedforward, sigmoidal 

 - radial basis functions. ellipsoidal basis functions  

 - Principal Component Analysis preprocessing 
option 

 - Autoassociative nets for nonlinear principal 
components analysis 

 -  rho nets 

• Training via optimization methods 

• Cross-validation for testing against "overfitting"  

• Graphical language for development 



 - GDA-based for signal processing, responding to 
events, sequential control 



NeurOn-Line architecture 

• G2 is the overall developer & end user environment 

• Integrated with G2 and GDA (Gensym Diagnostic 
Assistant) 

• Numerically-intensive training done in external C 
program 

• Communication via remote procedure calls and file 
transfer 



Why not just use a neural network?  

• Doesn't take advantage of process knowledge  

 - Network has to learn more, may generalize 
improperly 

 -  Danger of extrapolation outside of training data 

 - May be difficult/time consuming to "cover" the 
possible operating regimes 

 - A lot of testing may be required to build 
confidence in the network 

 - Minor plant changes or operating regime changes 
may require extensive retraining and retesting 

 - Many operating statuses change, leading to a 
large number of inputs to the net besides sensors 

  e.g., controller statuses, parallel equipment statuses 

• A model or partial model with a wide range of 
validity may be easily available, or generated  

 - Validity may go well beyond available training 
data 

 e.g., material, energy & pressure balances, valve & 
pump curves, controller models 



II. MODEL RESIDUAL ANALYSIS  

 

 

 





 



 



 

 

 

 



 

 



Model residuals form patterns for input to the 
NN 

Residuals Fault class 

( 0,  0,  0,  0 , 0) : Normal operation 

(-b,  b,  0,  0,  0) : flow 2 biased high by amount b 

(0, -b,  b,  0,  0) : flow 3 biased high by amount b 

(0, -b,  0,  0,  0) : leak, magnitude b, between flow &  
       flow 3 



Advantages of residuals    

• Simple to compute, no iteration required, no 
convergence problems  

• Models can be "partial", incomplete models - they 
are just information in the form of constraints, not 
a complete causal model 

  Same true for data reconciliation 

• Unmodeled faults will still generate residuals 
highlighting a fault, even though the NN will be 
unable to correctly classify the cause of the non-
normal operation 

  Same true for data reconciliation 



Why not just use model residuals as NN 
inputs? 

• Residuals are all "local" to one equation 

• Residuals arbitrarily depend on which balances are 
chosen 

 In above example, first flow is never compared to last 
flow, yet that is a perfectly valid comparison/balance.  
Only adjacent flows are compared.  

• Network has to learn all the "global" interactions 

 - Network may not generalize properly 

• Data reconciliation fully accounts for the 
interactions, using ALL of the model equations,  
instead of just comparing adjacent sensors 

• Data reconciliation allows you to specify 
measurement noise standard deviations, so 
network doesn't have to learn it  



III.  DATA RECONCILIATION 

Data Reconciliation 

• Want best estimates of variables in a system with 
measurements, consistent with some algebraic 
models 

 - Combining measurement information, 
measurement noise properties (variances),  and 
model information 

 Analogy to Kalman Filter in dynamic systems, although 
usually no "process noise" is modeled, just 
"measurement noise" 

• Traditionally associated mainly with mass & energy 
balances 

•  Associated "gross error detection" based on tests of 
model residuals or measurement adjustments - 
should be random 



Data Reconciliation mainly reduces effect of 
instrument biases  

• Uses algebraic models:  steady state assumption, 
with a few tricks  

 - Change in tank levels treated as equivalent to 
flow measurement 

 - Other dynamic extensions exist 

• Plant measurements must be averaged for time 
period consistent with steady-state assumption 

 - Typical 4 hours - 1 day 

 - High frequency noise filtered out 

 - Leaves only steady state error (bias) or very low 
frequencies  



Data Reconciliation is least-squares error 
minimization  

• Minimize "adjustments" to raw data based on their 
assumed variances  - weighted sum of squares of 
adjustments  

• Minimization subject to constraint that the balances 
are satisfied exactly 

•Nonlinear if the algebraic constraints are nonlinear 



Data Reconciliation - mathematical 
formulation  

The system 

measurements:   z = h(x) + v        

constraints:  g(x) = 0   

v is the measurement noise, with covariance matrix R 

R is usually diagonal  

Diagonal elements are measurement variances (square of 
std. dev.) 

The least-squares problem 

Find best estimate x as solution to the problem:  

minimize over x:    (z - h(x))
T
 R 

-1
 (z - h(x) )  

subject to:                 g(x) = 0 

 

Special case solutions exist for linear constraints and 
measurements     
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IV.  THE SYSTEM  

Overall process of building fault diagnosis 
system 

• Build a configurable simulator 

• Select features to be used for input to the neural 
network 

 - Sensors, valve positions 

 - Model equation residuals 

 - Other calculations 

 - Data Reconciliation measurement adjustments 

 - Filtering, averaging, other signal processing as 
needed 

• User the simulator to generate cases - a training 
data set 

 - Include sensor bias cases as faults 

 - Add random noise to sensors 

 - Randomly vary the inputs 

• Train & validate the network (classification 
problem) 

• Run-time use - use same features on real data   



Overview of the water grid model  

• Graphically-configured hydraulic network, as in 
municipal water grid  

• Generation of model equations from schematic 

 - Fixed pressures at sources or sinks  

 - Pressure/flow models of pumps, valves, orifice 
meters, pipes, junctions 

 - Conservation of mass  

 - Analogous to Kirchoff voltage & current laws, with 
device equations   

 - Generate matrices for linearization when desired 

• Algebraic equations only  

 - Tanks not considered, although this is a 
straightforward extension   



The system 

• G2-based schematic analyzer generates linear or 
nonlinear equations, sets up linear or nonlinear 
data reconciliation 

• Equations solved by IMSL/IDL (Wave Advantage) 
nonlinear equation-solver  

• Nonlinear data reconciliation solved by IMSL/IDL 
optimizers  

• Case generation for NeurOn-Line (neural network)  

 - G2 Generates cases of various sensor failures, 
simulating using above models 

 - G2 outputs patterns of model residuals or data 
reconciliation adjustments to file for training 

• NeurOn-Line does training, runs networks 



IMSL/IDL (Wave Advantage) interface to G2   

• Wave Advantage = IMSL/IDL, similar to MATLAB 

• G2 sends commands to Wave Advantage command 
line interpreter as ASCII text strings - G2 looks like 
a user to Wave Advantage  

• Optionally, G2 can generate files for compilation by 
Wave Advantage, triggered by command line 
input to Wave Advantage 

• Results come back from IMSL/IDL in files  



Software roles  

I.  G2 

• Coordination of entire system 

• Overall developer and user interface 

• Model representation 

• Schematic analyzer to generate equations from 
schematic 

• Case generation 

• Running NeurOn-Line 

 Calls separate C program for training (transparent to 
user)  

II.  IMSL/IDL  (now PV-WAVE)  

• Solution of model equations (linear & nonlinear 
equation solver) 

• Solution of data reconciliation optimization 
problem 

• Specialized 3D plots for visualization 



V.  RESULTS  

Case studies 

• "Raw" features were 8 measurements, 3 valve 
positions 

• Failures simulated were high & low biases for 
sensors 

• Thus, 16 failure modes plus 1 normal mode - 17 
classes 

• Sample pressures & valve positions automatically 
generated 

• Random measurement noise - uniform within 3 std. 
dev. 



Conclusions 

• Noise useful to force generalization, avoid 
numerical problems, avoid having to use small # 
nodes  

• Too much noise harmful - need too many cases 

• Cross validation would be essential in any NN 
application 

• Scaling data important (scaling block does this 
automatically) 

• Large number of outliers reduce classification 
accuracy, but a few only lead to excess, useless 
nodes 

• Remember that some simulators can fail to 
converge sometimes, leading to outliers  

• During case generation, check for outliers with 
equation residuals (outliers not obvious with 
reconciled data due to smearing, without more 
elaborate multivariate statistical tests) 

• Data reconciliation step adds complexity, 
computing time 

• Radial Basis Function nets (RBFN) train faster 



• RBFN have their own built-in error analysis to 
avoid extrapolation 

• Models themselves handle extrapolation which NN 
couldn't be trusted to handle - (residual or Data 
Rec. approach) 

• Hard to train RBFN with reconciled data and small 
biases (vs. noise), probably due to overlap of 
classes in clustering step 

• When the sensor noise is small vs. biases:  

 - Reconciled data worked better 

 -  numerical problems occurred more with non-
reconciled cases 

• Either model-based technique has the major 
advantage of extrapolating beyond training data, 
and better results for a given number of cases  


