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Abstract: IT executives have identified Root Cause Analysis (RCA) of failures as a key factor of event
automation within distributed enterprise computing environments. Integrity Reasoner, which is based on
Gensym's SymCure  technology, provides a methodology and framework for real-time fault management in
large-scale systems, addressing the full life cycle of problem identification based on symptoms, diagnostic
testing, and fault isolation, through recovery, as well as protecting the operator from “alarm flooding”.  By
exploiting the existing PATROL infrastructure, an effective RCA solution for any application domain based on
SymCure technology can be easily implemented and deployed.
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(1) Introduction and Motivation
Modern event automation and monitoring
technologies such as PATROL provide operators of
enterprise computing environments with incredible
amounts of observation information in the form of
events and alarms. While this high level of system
observability provides an incredibly powerful tool for
monitoring a large systems, this power often reveals a
greater need that, until now, has gone unanswered in
the industry. These operators can be bombarded by
hundreds of messages and alarms, usually resulting
from a small number of root cause problems.
Operators cannot adequately analyze all these events
in real-time; they need the system to assist in
pinpointing the root cause or a very small number of
candidate root causes. This very important analysis
function is now available for PATROL users. This
paper introduces this new technology, explores how it
works and how it allows the IT administrator to
drastically improve the level of service within their
organization.

(2) Application Availability Lifecycle
An overriding goal of the IT organization is, of course,
to provide a high level service to their clients. While
there are a number of aspects to this goal one very
important and measurable aspect is that of
application availability. Upon first consideration the
notion of application availability is somewhat
ubiquitous; it is more tangibly grasped in terms of its
various components, each of which comprises the
application availability lifecycle.

The application availability lifecycle allows us to
discuss the various aspects of application availability
in concrete terms. Stated simply, the application
availability lifecycle is comprised of 5 distinct points:

(1) Point of Failure (PoF): the point in time where one
or more application services are no longer
available

(2) Point of Notification (PoN): the point in time where
it is detected that the services are no longer
available

(3) Point of Diagnosis (PoD): the point in time of the
underlying root cause of the problem is identified

(4) Point of Recovery (PoR): the point in time where
the failed services are restored

(5) Point of Postmortem (PoP): the point of time
where information from the downtime experience
is fed back into the management system (to allow
proactive future management)

According to marketing studies, 80% of system
downtime (from PoF to PoR) is spent diagnosing the
problem to identify the root cause. The total wasted
resource impact may be even greater in some
situations where domain experts across multiple
disciplines (and departments) must be employed.
Moreover, organizations run the risk of becoming
unresponsive if the number of “false alarms” becomes
large (i.e. a modern day “boy who cried wolf”
syndrome).
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As the application availability lifecycle suggests, the
greatest improvements can be achieved by reducing
the diagnostic component expended in resolving
problems. If the diagnosis and complexity time (from
PoF to PoD) can be reduced, then the overall level of
service within an organization will be drastically
improved. This is precisely the component of the
application availability lifecycle that is addressed by
the PATROL Root Cause Analysis (RCA) system.

(3) Causal Directed Graphs (SymCure)
Gensym’s SymCure technology is a general
development and deployment environment for
building intelligent systems to automate real-time fault
management of complex systems. SymCure performs
on-line event correlation and interactive diagnosis to
address the full life cycle of problem identification:
symptoms, root-cause analysis, diagnostic testing,
fault isolation, and recovery. While SymCure is
applicable to a wide variety of applications, it
represents a breakthrough technology in the area of
RCA. As we will see in later sections, this technology
offers a number of significant advantages over
competing technologies. When incorporated within
BMC Software’s powerful suite of PATROL products,
SymCure becomes a cornerstone of a new standard
in the area of event automation the PATROL Root
Cause Analysis system. The next several sections
introduce the important aspects of the SymCure
technology and discuss its role within the PATROL
RCA system.

When events are detected, or arrive from an external
system, operators need a system to:

(1) Filter out redundant events so attention can be
focused on truly new information.

(2) Correlate events; recognize and summarize or
group related messages for presentation to the
operator, even if the root cause is not
determined.

(3) Diagnose the root causes of problems, based on
incoming symptoms and test results,
automatically choosing tests to be run
proactively in cost order.

(4) Run automated or guided manual tests as soon
as there is evidence of a problem.

(5) Execute automated or guided manual corrective
actions to address symptoms or fix problems.

(6) Communicate results to users and to other
computer applications.

It is evident that fault management goals for the
operations environment include more than just
detection and isolation. These goals are partly

addressed by alarm management, event correlation,
or abnormal situation management applications.
However, diagnostic testing and taking corrective
actions in those applications are usually ad hoc.

In addition, application developers need to provide
these capabilities quickly and reliably, and build re-
usable applications. For practical deployment,
installation must require minimal on-site manual
customization.  Automatic reconfiguration is also
needed, to account for changes in equipment,
topology, or operating mode.

SymCure provides a methodology and framework for
real-time fault management in large-scale systems.
SymCure addresses these goals with a model-based
framework to standardize development using generic
(class-based) fault propagation models. SymCure
automatically looks at secondary data or runs more
elaborate tests only when problems are suspected
based on symptoms. SymCure manages operations
in domains as diverse as process plants,
communications networks, and enterprise-wide
software applications.

(4) Basic Modeling Elements
A fault propagation model in SymCure describes the
propagation of failures via potential failure paths in
the system by modeling how fault events will cause
other symptom events and test-result events. It is a
directed graph (digraph) model, with the nodes
representing fault, symptom and test events, and the
arcs connecting the nodes representing the “cause
and effect” relationships or dependencies among
these events. An arc from an event node “A” to event
node “B” means, “if event A occurs then event B will
occur (after the time delay specified in the arc)” or
“event A causes event B (after the time delay
specified in the arc)”. The events represented in the
model can take the values,  “true”, “false” or
“unknown”.

A “Fault” is an underlying independent root cause
problem. Faults have associated corrective or
mitigation actions specified by procedures that can be
started against a specific domain object. Actions can
be defined to execute when a fault is suspected as a
cause of the observed symptoms and when a fault is
confirmed. For a fault event, a true value indicates
belief that the fault has occurred and a false value
indicates belief that the fault did not occur. A fault
may be “suspect” if it is a possible cause of observed
symptoms.

 A “Symptom” is an effect of underlying faults in the
monitored system. A measured symptom arrives at
SymCure, unsolicited asynchronously from external
systems. An unmeasured symptom status is used for
failed sensors, and convenience in modeling, to
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represent those effects that are not measurable, but
are important for fault propagation. For a symptom
event, a true value means that the symptom has
occurred and a false value means that the symptom
did not occur within the time delays specified in the
arcs.

A “Test” is an observable effect of faults in the
monitored system, like a measured symptom. But,
unlike symptoms, the observation can be requested
at any time.  Test results arrive asynchronously (and
possibly unsolicited), just like a symptom. Tests have
an associated set of actions applied to the monitored
system, specified as an external procedure name that
can be started against a specific domain object.
Upon request, after some indeterminate amount of
time, the result of the test is returned to SymCure as
a truth-value. Test procedures may be fully
automated, may simply be a request to an operator,
or a combination of the two. The true or false value
for a test indicates whether the test passes or fails,
respectively. The notion of "test" is powerful and
general, (Simpson and Sheppard, 1994) and can
imbed arbitrarily complex analysis and actions, as
long as it returns a single truth-value.

(5) Limitations of Other Diagnostic Techniques

Passive Symptom Monitoring
While desirable, passive symptom monitoring is not
always good enough for fault isolation. Human
troubleshooters know better, performing lab tests,
visual checks, or device built-in-tests.  They change
controller tuning, put control loops in manual mode,
or run a step test.  The distinction between tests and
symptoms can be used to improve scalability.  In
large systems, it is impractical to monitor every
variable regularly and often.  Instead key variables
are monitored often, generating symptoms. Once an
initial symptom indicates a problem, additional
variables can be examined as tests to complete
diagnosis. Unless tests are represented in a model
linking them to faults, a diagnostic system can’t
schedule tests, so tests are ad-hoc. In addition, tests
need to be ranked based on cost factors such as
disruption of the process, resource cost, or
automated vs. manual testing.

Static Pattern Matching and Compiled Models
Static pattern matching (classification) includes neural
net classifiers, Case Based Reasoning (CBR), and
simple rule-based systems. During application
development, each failure is hypothesized, and all
expected symptom values are determined - a failure
"signature".  At run time, the pattern matcher
determines the fault(s) with the signature closest to
the observed symptom vector.  This captures model
knowledge, but is not robust enough to account for

major dynamic changes in the monitored system,
such as switch positions, controller modes, etc.
Unfortunately, large systems change often and
developing separate pattern matchers for each
possible combination of operating modes or topology
wouldn't scale up. A model-based approach is
required. However, if the models are compiled for use
by pattern matchers, recompilation will still be needed
with each change. This introduces delays, and
interrupts ongoing diagnosis.

Systems requiring training from live data (e.g. neural
nets or CBR) have additional problems in handling
large systems, including generalization of results
from failures involving symptoms in multiple objects,
learning rarely-occurring faults, and deciding when
old patterns are no longer relevant.

Time Window Problem
Static pattern matchers require periodic processing
of a "snapshot" of data or events captured within a
time window. Calculations are started fresh with
each time window - results of previous analyses are
not considered. Time delays between fault
occurrence and symptom arrival cause problems.
With only partial symptoms present, diagnostic
conclusions can be wrong.  Tuning the time window
size to balance misdiagnosis vs. timely results is
difficult. SymCure processes individual events
immediately as they arrive asynchronously, and
event values are remembered until overwritten or
timed out, without the need for a time window.

Reasoning with Missing Symptoms
While using pattern-matching techniques, the
absence of a symptom event may be taken as
evidence that the underlying symptom really isn't
present (value of false), hence associated possible
faults aren't present. That can lead to incorrect
diagnosis if there are time delays between the fault
and the symptom, or communications problems.
Evidence based on missing symptoms should not be
used until after the worst-case time delay.
Additionally, when large delays are present, it is
desirable to offer preliminary diagnosis before all
symptoms have arrived.  In that case, the only
values that should be used are those for symptoms
which have already arrived.

Single Failure Assumption
Many techniques assume there is a single failure.
This is unrealistic in any large system where multiple
faults have already occurred and previous faults
continue to cause symptoms that may overlap with
new problems. Static pattern matchers will fail to
handle these situations, since a combination of faults
leads to a pattern of symptoms far from any single
fault’s failure signature.  Encoding all 2- or 3-failure
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combinations does not scale up.  Instead, users
must partition the system into many small diagnostic
subsystems, so that only one failure is likely in a
given subsystem.

Other Modeling Approaches
Process models are often based on algebraic or
differential equations, or qualitative versions such as
Signed Directed Graph (SDG) which represent the
propagation of process variable deviations. These
models do not represent test procedures, relay or
PLC logic, frequency domain information, discrete
operational modes (controller modes, switch
positions), or messages (events) from complex
software in alarm systems, shutdown systems,
optimizers, or intelligent instruments. “Smart sensor
error code 30”, “backup power starting”, or “no
response” messages don’t fit the paradigm.
SymCure shares with SDG an orientation towards
asynchronous event processing and propagation of
information, instead of pattern matching. Like
SymCure, many SDG implementations have used
generic, class-level models for automating diagnosis
(Finch, et al., 1990), and HAZOP analysis
(Vaidhyanathan and Venkatasubramanian, 1995).

Bayesian Network (BN) is a powerful modeling
technique that can represent generic fault
propagation knowledge. With the additional
probability information, BN might
perform better in cases when there are few
symptoms or tests, and where tests are expensive.
But BN introduces unscalable computing complexity
and is not needed in data-rich environments with
inexpensive tests.

Design models for "normal" operation are often used
in diagnostic systems.  However, faults invalidate
design model assumptions. Pattern matches on
observed deviations from "normal" can be used for
diagnosis, but suffer the problems noted earlier for

pattern matching and compiled models. SymCure
can accommodate such quantitative “normal” models
in the definition of the tests and symptoms.

The fault propagation models used in SymCure are
similar to the information flow models used for
model-based design for testability and integrated
diagnosis (Simpson and Sheppard, 1994). SymCure
extends these models for on-line event correlation,
interactive diagnosis and fault mitigation. Major
extensions were a strong event orientation to handle
processing of asynchronous events, handling
symptoms as distinct from tests, run time selection of
tests dependent on previous results (instead of
offline generation of one fixed fault tree for all time),
specification of generic models with specific model
instantiation at run time, graphical input of models
and eliminating the poorly-scaling matrix
calculations.

The extended real-time Failure Environment
Analysis Tool (FEAT) (Malin, et al., 1992) used
“failure state information flow” models which are
similar to the fault propagation models used in
SymCure.  But FEAT was limited due to passive
monitoring (no tests), lack of generic modeling, the
use of compiled models and a complex matrix
analysis to identify single and double faults.

Scalability
Scalability (ability to scale a system up to a large
number of objects) is a central issue in fault
management in large-scale systems.  SymCure
addresses this issue through linear algorithmic
complexity, “management by exception” to only
instantiate a specific, localized model at run time
when initial symptoms indicate a possible problem,
models at a high level of abstraction, and an
architecture supporting distribution over multiple
computers.

Figure 1. The Architecture of SymCure
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(6) Architecture
The architecture of SymCure is presented in figure 1.
The input specifications required for SymCure are the
Generic Fault Propagation Models and the Specific
Domain Model. Using these specifications, SymCure
correlates incoming symptom and test result events,
identifies suspect faults and performs diagnosis by
selecting appropriate test and mitigation actions to
resolve the suspect faults. The outputs from SymCure
are the diagnostic conclusions and test and action
requests. The various components of SymCure are
described in detail in the following sections:

Generic Fault Propagation Models (GFPM)
GFPMs consist of the generic cause-effect relations
among the fault, symptom and test events in the
domain objects. The GFPM of a domain-object class
defines the propagation of failures within its instances
and to other classes of domain objects via
relationships. This is a generic (class-level) “library” of
models, independent of any specific topology of
domain objects and relationships present in any
particular system. The GFPMs can be developed
from first-principles models, experience-based
knowledge, or FMEA results. GFPMs are specified
via the developer GUI graphically.

The event nodes and the arcs in the GFPM can be
made conditionally dependent on the states of the
domain objects by defining appropriate conditional
methods on the nodes and the arcs. These
conditional methods are evaluated during event
correlation and only the nodes and arcs that are valid
or available for the current states of the domain
objects are used for correlation. In addition, state

dependent methods are defined for the event nodes
to calculate the cost of running a test, the cost of
fixing a fault and the cost of not fixing a fault. The
costs evaluated by these methods are used to rank
the candidate tests for diagnosis and the fault
mitigation actions.

Specific Domain Model (SDM)
The SDM is an object-oriented model of the specific
system being monitored. It might model physical
equipment, as well as more abstract entities affecting
system performance, such as controllers or software
applications. The SDM includes objects representing
the monitored domain entities, their connectivity,
containment and other relationships. The SDM can be
imported from external databases or files or can be
specified via the developer GUI.

Event Correlator
The Event Correlator correlates asynchronous
symptom and test result events input to SymCure
using Specific Fault Propagation Models (SFPMs).
SFPM is a fault propagation model that describes the
propagation of fault, symptom and test events within
and across specific domain objects. The SFPM
Builder constructs SFPMs at run time starting from
the incoming events by appropriately combining the
GFPMs and the SDM, just building enough event
nodes to account for possible causes and effects of
observed symptoms. “Event Detectors” are external
applications that monitor and analyze the numerical
data trend in the system, detect and generate
appropriate symptom events to be input to SymCure.
The event correlator recognizes that a group of
events are related to each other based on their
connectivity criteria in the SFPM such as the
existence of a directed path or the fact that the events

Event
Correlato
Specific FP

Model
Specific

FP Models
Tests /
Actions

Diagnosti
c

Correlated
EventsEvent

Detector

Numerica
Data Symptom

Events

Specific
Domain
Model

Automated
Test/Action
Procedures

Operato
r

Test Result
Events

Symptom
Events

Diagnostic
Conclusion

Tests / Action
Requests

Generic
Fault

Propagation

Develop
er

SymC



 6

could be caused by common faults. Then the value of
the incoming event is propagated in the SFPM to infer
and predict the values of other events and to identify
suspect faults. OR logic is used by default for the
propagation of event values during correlation. Thus,
“the value of a node is true if the value of one (or
more) of its inputs is true”. Conversely, “if the value of
a node is false, then the value of all of its inputs ought
to be false”. Also using the OR logic, “if the value of
an event is true, then all the upstream fault events
become suspects”. Hence, the event correlator
identifies the suspect faults by searching upstream
from the incoming symptom and test result events
with a true value in the SFPM. This information is
input to the Diagnostic Conductor.

During event correlation, if the value of a symptom
event is predicted true by propagation and if the
actual symptom with a true value does not show up
within the time delays specified in the arcs, then the
value of the symptom will be reset to false and re-
propagated. Thus, the interim event correlation and
diagnosis will be consistent with observed events at
any time and the final correlation accounts for
symptoms that did not occur. The default time delay is
“infinite”, so by default missing symptoms are not
used as evidence. In addition to the OR logic, AND
and NOT logic propagation relationships among the
events could also be specified in the SFPM.

Diagnostic Conductor
The Diagnostic Conductor resolves the suspected
faults by identifying appropriate candidate tests that
when executed would provide additional information
regarding those faults. These candidate tests are
those which are the effects of the suspect faults. The
Test Selector identifies these tests by searching
downstream from the suspect faults in the SFPM. In
the case of an automated test, a request is sent from
SymCure to execute the automated test procedure.
Otherwise, the test is displayed on the operator GUI
for approval before execution. The candidate tests
are ranked based on cost criteria such as resource
use, disruptiveness, or the information value of a test.
The test results are asynchronously input back to the
event correlator for further correlation to reduce the
number of suspect faults.

Based on the correlation of the test results, the
suspected faults are either ruled out or concluded to
have occurred. Diagnostic conclusions are output
from SymCure to the operator and to other external
systems. Whenever SymCure concludes a fault as a
suspect or occurred, the Actions Selector will execute
appropriate mitigation actions specified for the fault.
Similar to the test procedures, these mitigation
actions can also be automated procedures or may
require operator intervention. These mitigation actions
can also be ranked based on criteria such as the

failure-rate, the cost of fixing, or the cost of not fixing
the faults. The test and mitigation procedures can be
defined using OPAC (OPerations expert ACtions)
graphical procedure development tool or G2, external
to SymCure.

(7) Exploiting the PATROL Standard
The PATROL RCA system derives its strength from
combining two complementary technologies into a
single solution. As described in the previous sections,
SymCure provides a powerful technique for inferring
root cause of system failures from an asynchronous
stream of system failure events and alarms.
However, effective deployment of this technology
requires a solid infrastructure to reliably deliver
relevant system events to the SymCure engine;
additionally, the conclusions must be made available
to the end user (in this case, the system operator) in a
clear and useful fashion. The industry-standard
PATROL suite of products provides such an
infrastructure; augmenting this existing product suite
with RCA capability is a natural evolution of PATROL
systems that are deployed today.

The existing PATROL standard is exploited in a
number of ways in yielding an effective RCA solution.

(1) Existing KMs. Existing KMs provide a wealth of
system wellness information across a very large
number of application domains. In addition to
using this data for “normal” PATROL monitoring
activities, RCA exploits this existing information
by forwarding it to the SymCure engine for higher
analysis. By applying this information to the
relevant SymCure domain models, root causes of
system failures can be determined.

(2) Scalability. PATROL spans multiple platforms
over large distributed systems. As such, it
provides a robust and proven delivery system for
event and alarm data required by the SymCure
engine.

(3) Adaptability. PATROL supports powerful
discovery mechanism that allows it to be
deployed out-of-the-box without the necessity of
site-by-site configuration. In other words, the
PATROL system discovers the existing
“computing terrain” (relevant information varies
from application domain to application domain but
is handled automatically) when it is first turned-on
and then maintains this information over time as it
is used. The RCA solutions inherit this powerful
mechanism and exploit it by virtue of the intrinsic
separation of the domain map from the fault
propagation models within the SymCure system.

(4) Reusability. RCA models can, in turn, be used by
(incorporated by) other RCA models forming a
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natural hierarchy of knowledge. Thus, RCA
solutions inherit improvements and intelligence
from other solutions as they evolve.

(8) Conclusions

PATROL RCA represents a breakthrough in event
automation technology by incorporating a generic
fault propagation modeling approach called SymCure.
This approach employs novel modeling techniques
such as defining test and mitigation actions as part of
the model and using built-in state conditional
dependencies.

PATROL RCA drastically reduces the time and
resource intensive task of identifying root cause of
failure allowing the IT administrator to drastically
improve the level of application availability within
their organization

SymCure appropriately combines generic models
with specific domain representation and builds
focused specific models to investigate observed
asynchronous events. Using the specific models,
SymCure recognizes that a group of events are
correlated to each other, identifies suspected faults
that could have caused the symptoms, and selects
and executes candidate tests and mitigation actions
to resolve the problems.

PATROL RCA exploits the existing PATROL product
infrastructure to derive additional benefit from the
existing PATROL KM investment while at the same
time inheriting PATROL scalability and adaptability.
RCA solutions are reusable in that RCA solutions
can, in turn, be used by other RCA solutions,
inheriting improvements and intelligence from other
solutions as they evolve.
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