

 3rd IFAC Workshop on On-Line Fault Detection and Supervision in the Chemical Process Industries, Solaize, France (June 4-5, 1998)

A GENERIC FAULT PROPAGATION MODELING APPROACH TO ON-LINE

DIAGNOSIS AND EVENT CORRELATION

Gregory M. Stanley* and Ramesh Vaidhyanathan

Gensym Corporation, 1776 Yorktown, Suite 700, Houston, TX, 77056 (USA)

Abstract: CDG (Causal Directed Graph) provides a methodology and framework for real-time fault management

in large-scale systems, addressing the full life cycle of problem identification based on symptoms, diagnostic

testing, and fault isolation, through recovery, as well as protecting the operator from “alarm flooding”. It is based

on generic fault propagation models, tied to an object-oriented domain representation and scalable algorithms.

CDG combines the generality of FMEA models with on-line, asynchronous event correlation and diagnosis. The

architecture of CDG is described and the modeling approach is discussed with examples. Event correlation and

interactive diagnosis using CDG is illustrated through a nitric acid cooling system example.

Keywords: diagnosis, fault propagation model, digraph, knowledge engineering, automation, real-time systems,

failure and recovery, FMEA, test planning

1. Introduction and Motivation

Operators of large systems are constantly bombarded by

events in the form of messages and alarms, often resulting

from a small number of root cause problems. Operators

cannot adequately analyze all these events in real-time.

Once events are detected, or arrive from an external

system, operators need a system to:

(1) Filter out redundant events so attention can be

focused on truly new information.

(2) Correlate events - recognize and summarize or group

related messages for presentation to the operator,

even if the root cause is not determined.

(3) Diagnose the root causes of problems, based on

incoming symptoms and test results, automatically

choosing tests to be run proactively in cost order.

(4) Run automated or guided manual tests as soon as

there is evidence of a problem.

(5) Execute automated or guided manual corrective

actions to address symptoms or fix problems.

(6) Communicate results to users and to other computer

applications.

It is evident that fault management goals for the

operations environment include more than just detection

and isolation. These goals are partly addressed by alarm

management, event correlation, or abnormal situation

management applications. However, diagnostic testing

and taking corrective actions in those applications are

usually ad hoc.

In addition, application developers need to provide these

capabilities quickly and reliably, and build re-usable

applications. For practical deployment, installation must

require minimal on-site manual customization. Automatic

reconfiguration is also needed, to account for changes in

equipment, topology, or operating mode.

CDG (Causal Directed Graph) provides a methodology

and framework for real-time fault management in large-

scale systems. CDG addresses these goals with a model-

based framework to standardize development using

generic (class-based) fault propagation models. CDG

automatically looks at secondary data or runs more

elaborate tests only when problems are suspected based

on symptoms. CDG manages operations in domains as

diverse as process plants, communications networks, and

enterprise-wide software applications.

2. Basic Modeling Elements

A fault propagation model in CDG describes the

propagation of failures via potential failure paths in the

system by modeling how fault events will cause other

symptom events and test-result events. It is a directed graph

(digraph) model, with the nodes representing fault,

symptom and test events, and the arcs connecting the nodes

representing the “cause and effect” relationships or

dependencies among these events. An arc from an event

node “A” to event node “B” means, “if event A occurs then

event B will occur (after the time delay specified in the

arc)” or “event A causes event B (after the time delay

specified in the arc)”. The events represented in the model

can take the values, “true”, “false” or “unknown”.

A “Fault” is an underlying independent root cause problem.

Faults have associated corrective or mitigation actions

specified by procedures that can be started against a

specific domain object. Actions can be defined to execute

when a fault is suspected as a cause of the observed

symptoms and when a fault is confirmed. For a fault event,

a true value indicates belief that the fault has occurred and

a false value indicates belief that the fault did not occur. A

fault may be “suspect” if it is a possible cause of observed

symptoms.

 2

 A “Symptom” is an effect of underlying faults in the

monitored system. A measured symptom arrives at CDG,

unsolicited asynchronously from external systems. An

unmeasured symptom status is used for failed sensors, and

convenience in modeling, to represent those effects that are

not measurable, but are important for fault propagation. For

a symptom event, a true value means that the symptom has

occurred and a false value means that the symptom did not

occur within the time delays specified in the arcs.

A “Test” is an observable effect of faults in the monitored

system, like a measured symptom. But, unlike symptoms,

the observation can be requested at any time. Test results

arrive asynchronously (and possibly unsolicited), just like a

symptom. Tests have an associated set of actions applied to

the monitored system, specified as an external procedure

name that can be started against a specific domain object.

Upon request, after some indeterminate amount of time, the

result of the test is returned to CDG as a truth-value. Test

procedures may be fully automated, may simply be a

request to an operator, or a combination of the two. The

true or false value for a test indicates whether the test

passes or fails, respectively. The notion of "test" is

powerful and general, (Simpson and Sheppard, 1994) and

can imbed arbitrarily complex analysis and actions, as long

as it returns a single truth-value.

3. Limitations of Other Diagnostic Techniques

Passive Symptom Monitoring

While desirable, passive symptom monitoring is not

always good enough for fault isolation. Human

troubleshooters know better, performing lab tests, visual

checks, or device built-in-tests. They change controller

tuning, put control loops in manual mode, or run a step

test. The distinction between tests and symptoms can be

used to improve scalability. In large systems, it is

impractical to monitor every variable regularly and often.

Instead key variables are monitored often, generating

symptoms. Once an initial symptom indicates a problem,

additional variables can be examined as tests to complete

diagnosis. Unless tests are represented in a model linking

them to faults, a diagnostic system can’t schedule tests, so

tests are ad-hoc. In addition, tests need to be ranked based

on cost factors such as disruption of the process, resource

cost, or automated vs. manual testing.

Static Pattern Matching and Compiled Models

Static pattern matching (classification) includes neural net

classifiers, Case Based Reasoning (CBR), and simple rule-

based systems. During application development, each

failure is hypothesized, and all expected symptom values

are determined - a failure "signature". At run time, the

pattern matcher determines the fault(s) with the signature

closest to the observed symptom vector. This captures

model knowledge, but is not robust enough to account for

major dynamic changes in the monitored system, such as

switch positions, controller modes, etc.

Unfortunately, large systems change often and developing

separate pattern matchers for each possible combination of

operating modes or topology wouldn't scale up. A model-

based approach is required. However, if the models are

compiled for use by pattern matchers, recompilation will

still be needed with each change. This introduces delays,

and interrupts ongoing diagnosis.

Systems requiring training from live data (e.g. neural nets

or CBR) have additional problems in handling large

systems, including generalization of results from failures

involving symptoms in multiple objects, learning rarely-

occurring faults, and deciding when old patterns are no

longer relevant.

Time Window Problem

Static pattern matchers require periodic processing of a

"snapshot" of data or events captured within a time

window. Calculations are started fresh with each time

window - results of previous analyses are not considered.

Time delays between fault occurrence and symptom

arrival cause problems. With only partial symptoms

present, diagnostic conclusions can be wrong. Tuning the

time window size to balance misdiagnosis vs. timely

results is difficult. CDG processes individual events

immediately as they arrive asynchronously, and event

values are remembered until overwritten or timed out,

without the need for a time window.

Reasoning with Missing Symptoms

While using pattern-matching techniques, the absence of a

symptom event may be taken as evidence that the

underlying symptom really isn't present (value of false),

hence associated possible faults aren't present. That can

lead to incorrect diagnosis if there are time delays

between the fault and the symptom, or communications

problems. Evidence based on missing symptoms should

not be used until after the worst-case time delay.

Additionally, when large delays are present, it is desirable

to offer preliminary diagnosis before all symptoms have

arrived. In that case, the only values that should be used

are those for symptoms that have already arrived.

Single Failure Assumption

Many techniques assume there is a single failure. This is

unrealistic in any large system where multiple faults have

already occurred and previous faults continue to cause

symptoms that may overlap with new problems. Static

pattern matchers will fail to handle these situations, since

a combination of faults leads to a pattern of symptoms far

from any single fault’s failure signature. Encoding all 2-

or 3-failure combinations does not scale up. Instead, users

must partition the system into many small diagnostic

subsystems, so that only one failure is likely in a given

subsystem.

 3

Other Modeling Approaches

Process models are often based on algebraic or differential

equations, or qualitative versions such as Signed Directed

Graph (SDG) that represent the propagation of process

variable deviations. These models do not represent test

procedures, relay or PLC logic, frequency domain

information, discrete operational modes (controller

modes, switch positions), or messages (events) from

complex software in alarm systems, shutdown systems,

optimizers, or intelligent instruments. “Smart sensor error

code 30”, “backup power starting”, or “no response”

messages don’t fit the paradigm. CDG shares with SDG

an orientation towards asynchronous event processing and

propagation of information, instead of pattern matching.

Like CDG, many SDG implementations have used

generic, class-level models for automating diagnosis

(Finch, et al., 1990), and HAZOP analysis

(Vaidhyanathan and Venkatasubramanian, 1995).

Bayesian Network (BN) is a powerful modeling technique

that can represent generic fault propagation knowledge.

With the additional probability information, BN might

perform better in cases when there are few symptoms or

tests, and where tests are expensive. But BN introduces

unscalable computing complexity and is not needed in

data-rich environments with inexpensive tests.

Design models for "normal" operation are often used in

diagnostic systems. However, faults invalidate design

model assumptions. Pattern matches on observed

deviations from "normal" can be used for diagnosis, but

suffer the problems noted earlier for pattern matching and

compiled models. CDG can accommodate such

quantitative “normal” models in the definition of the tests

and symptoms.

The fault propagation models used in CDG are similar to

the information flow models used for model-based design

for testability and integrated diagnosis (Simpson and

Sheppard, 1994). CDG extends these models for on-line

event correlation, interactive diagnosis and fault

mitigation. Major extensions were a strong event

orientation to handle processing of asynchronous events,

handling symptoms as distinct from tests, run time

selection of tests dependent on previous results (instead of

offline generation of one fixed fault tree for all time),

specification of generic models with specific model

instantiation at run time, graphical input of models and

eliminating the poorly-scaling matrix calculations.

The extended real-time Failure Environment Analysis

Tool (FEAT) (Malin, et al., 1992) used “failure state

information flow” models that are similar to the fault

propagation models used in CDG. But FEAT was limited

due to passive monitoring (no tests), lack of generic

modeling, the use of compiled models and a complex

matrix analysis to identify single and double faults.

Scalability

Scalability (ability to scale a system up to a large number

of objects) is a central issue in fault management in large-

scale systems. CDG addresses this issue through linear

algorithmic complexity, “management by exception” to

only instantiate a specific, localized model at run time

when initial symptoms indicate a possible problem,

models at a high level of abstraction, and an architecture

supporting distribution over multiple computers.

4. Architecture

The architecture of CDG is presented in figure 1. The input

specifications required for CDG are the Generic Fault

Propagation Models and the Specific Domain Model.

Using these specifications, CDG correlates incoming

symptom and test result events, identifies suspect faults and

performs diagnosis by selecting appropriate test and

mitigation actions to resolve the suspect faults. The outputs

from CDG are the diagnostic conclusions and test and

action requests. The various components of CDG are

described in detail in the following sections:

Generic Fault Propagation Models (GFPM)

GFPMs consist of the generic cause-effect relations among

the fault, symptom and test events in the domain objects.

The GFPM of a domain-object class defines the

propagation of failures within its instances and to other

classes of domain objects via relationships. This is a

generic (class-level) “library” of models, independent of

any specific topology of domain objects and relationships

present in any particular system. The GFPMs can be

developed from first-principles models, experience-based

knowledge, or FMEA results. GFPMs are specified via the

developer GUI graphically.

The event nodes and the arcs in the GFPM can be made

conditionally dependent on the states of the domain objects

by defining appropriate conditional methods on the nodes

and the arcs. These conditional methods are evaluated

during event correlation and only the nodes and arcs that

are valid or available for the current states of the domain

objects are used for correlation. In addition, state dependent

methods are defined for the event nodes to calculate the

cost of running a test, the cost of fixing a fault and the cost

of not fixing a fault. The costs evaluated by these methods

are used to rank the candidate tests for diagnosis and the

fault mitigation actions.

Specific Domain Model (SDM)

The SDM is an object-oriented model of the specific

system being monitored. It might model physical

equipment, as well as more abstract entities affecting

system performance, such as controllers or software

applications. The SDM includes objects representing the

monitored domain entities, their connectivity, containment

and other relationships. The SDM can be imported from

external databases or files or can be specified via the

developer GUI.

 4

Event Correlator

The Event Correlator correlates asynchronous symptom

and test result events input to CDG using Specific Fault

Propagation Models (SFPMs). SFPM is a fault propagation

model that describes the propagation of fault, symptom and

test events within and across specific domain objects. The

SFPM Builder constructs SFPMs at run time starting from

the incoming events by appropriately combining the

GFPMs and the SDM, just building enough event nodes to

account for possible causes and effects of observed

symptoms. “Event Detectors” are external applications that

monitor and analyze the numerical data trend in the system,

detect and generate appropriate symptom events to be input

to CDG.

The event correlator recognizes that a group of events are

related to each other based on their connectivity criteria in

the SFPM such as the existence of a directed path or the

fact that the events could be caused by common faults.

Then the value of the incoming event is propagated in the

SFPM to infer and predict the values of other events and to

identify suspect faults. OR logic is used by default for the

propagation of event values during correlation. Thus, “the

value of a node is true if the value of one (or more) of its

inputs is true”. Conversely, “if the value of a node is false,

then the value of all of its inputs ought to be false”. Also

using the OR logic, “if the value of an event is true, then all

the upstream fault events become suspects”. Hence, the

event correlator identifies the suspect faults by searching

upstream from the incoming symptom and test result events

with a true value in the SFPM. This information is input to

the Diagnostic Conductor.

During event correlation, if the value of a symptom event is

predicted true by propagation and if the actual symptom

with a true value does not show up within the time delays

specified in the arcs, then the value of the symptom will be

reset to false and re-propagated. Thus, the interim event

correlation and diagnosis will be consistent with observed

events at any time and the final correlation accounts for

symptoms that did not occur. The default time delay is

“infinite”, so by default missing symptoms are not used as

evidence. In addition to the OR logic, AND and NOT logic

propagation relationships among the events could also be

specified in the SFPM.

Diagnostic Conductor

The Diagnostic Conductor resolves the suspected faults by

identifying appropriate candidate tests that when executed

would provide additional information regarding those

faults. These candidate tests are those which are the effects

of the suspect faults. The Test Selector identifies these tests

by searching downstream from the suspect faults in the

SFPM. In the case of an automated test, a request is sent

from CDG to execute the automated test procedure.

Otherwise, the test is displayed on the operator GUI for

approval before execution. The candidate tests are ranked

based on cost criteria such as resource use, disruptiveness,

Event

Correlator

Specific FP

Model Builder
Specific

FP Models
Tests / Actions

Selector

Diagnostic

Conductor
Correlated

Events Event

Detectors

Numerical

Data Symptom

Events

Specific

Domain

Model

Automated

Test/Action

Procedures

Operator

GUI

Test Result

Events

Symptom

Events

Diagnostic

Conclusions

Tests / Actions

Requests

Generic Fault

Propagation

Models

Developer

GUI

CDG

Figure 1. The Architecture of CDG

 5

or the information value of a test. The test results are

asynchronously input back to the event correlator for

further correlation to reduce the number of suspect faults.

Based on the correlation of the test results, the suspected

faults are either ruled out or concluded to have occurred.

Diagnostic conclusions are output from CDG to the

operator and to other external systems. Whenever CDG

concludes a fault as a suspect or occurred, the Actions

Selector will execute appropriate mitigation actions

specified for the fault. Similar to the test procedures, these

mitigation actions can also be automated procedures or

may require operator intervention. These mitigation actions

can also be ranked based on criteria such as the failure-rate,

the cost of fixing, or the cost of not fixing the faults. The

test and mitigation procedures can be defined using OPAC

(OPerations expert ACtions) graphical procedure

development tool or G2, external to CDG.

5. GFPM of the Controller and Sensor

A part of the GFPM of the controller and sensor are shown

in figures 2 and 3, respectively. Each event in the GFPMs

has a category attribute that specifies the name of the event

and a class attribute that specifies the class of the domain

object for which the event is defined. These attribute values

are displayed at the side of the event nodes. The square

icon nodes represent faults and the circular icon nodes

represent symptoms and tests. The smaller circular icon

nodes represent symptom-views and test-views, which are

the views of symptoms and tests defined for another class

of domain object. A propagation-relation that specifies the

relation between the domain objects of the event-view node

and the event node is defined on the arc connecting these

nodes.

In the GFPM of the controller, the fault “High Gain

Tuning” represents the controller gain being set too high.

This fault could cause the measured symptom “Excessive

Cycling of Output Signal” from the controller. In addition,

the measured symptom, “Excessive Cycling of Measured

Variable” in a sensor connected to the controller could

cause the symptom “Excessive Cycling of Input Signal” to

the controller, which in turn could cause the measured

symptom “Excessive Cycling of Output Signal” from the

controller, due to control action.

The “Reduced Gain Test” in the controller is a candidate

test for isolating the fault “High Gain Tuning” in the

controller. This test involves a series of actions wherein the

gain of the controller is reduced and the measured variable

is monitored to determine if the cycling of the measured

variable dissipates. A true or false result for this test will

respectively confirm or rule out the “High Gain Tuning” in

the controller as the fault that might have occurred.

Mitigation actions such as “lowering the gain of the

controller setting” or “switching the controller to manual

mode” are defined for this fault.

In the GFPM of the sensor, the fault “Sensor Fouling”

represents the accumulation of material around the

thermowell of the sensor. This fault could cause the

unmeasured symptom “Excessive Measurement Lag” in the

sensor, which in turn could cause the measured symptom

“Excessive Cycling of Measured Variable” in the sensor.

The “Lag Estimation Test” in a controller connected to the

sensor is a candidate test for isolating this fault. This test

involves a series of actions wherein the controller is

switched to manual mode from automatic mode, and then a

step response test is performed by changing the

manipulated variable and estimating the time-constant and

the lag time by monitoring the effect on the measured

variable. If the time-constant and the lag time of the sensor

measurement are significantly higher than their normal

values, the result of this test is true, else false. A true or

false result for this test will respectively confirm or rule out

the “Sensor Fouling” in the sensor as the fault that might

have occurred. Mitigation actions such as “cleaning the

thermowell of the sensor” or “replacing the sensor” are

defined for this fault.

6. Nitric Acid Cooling System Example

In this section, event correlation and diagnosis using CDG

is illustrated through a nitric acid cooling system example

SDM shown in figure 4. In this system, a feedback

temperature controller controls the temperature of nitric

acid to a reactor by manipulating the coolant flow via a

flow control valve. In addition to the GFPM of the

controller and sensor described in the previous section,

generic models for the flow control valve and heat

exchanger are defined in CDG. The initial measured

symptom, “Excessive Cycling of Measured Temperature”

true, in the sensor will be detected by an event detector and

this event will be input to CDG. Starting from this

Figure 2. GFPM of the Controller

Figure 3. GFPM of the Sensor

 6

symptom, CDG will build the SFPM by appropriately

combining the SDM and the GFPMs in the model library.

By propagating the true value of the “Excessive Cycling of

Measured Temperature” symptom in the SFPM, the CDG

event correlator will identify the faults “High Gain Tuning”

in the temperature controller and “Sensor Fouling” around

the temperature sensor thermowell as the suspected root

causes (assuming that the hot nitric acid inlet temperature

is a measured variable and the corresponding possible

cause “Excessive Cycling of Hot Nitric Acid Inlet

Temperature” was already eliminated). This information

will be fed to the CDG diagnostic conductor, which will

then identify “Reduced Gain Test” and “Lag Estimation

Test” in the controller as the respective candidate tests for

resolving the suspect faults in cost order. The operator or

automated procedures can then execute these test actions,

and the test results are asynchronously input back to CDG.

The CDG event correlator will propagate those test results

in the SFPM to confirm or rule out the suspect faults.

Depending on the “Reduced Gain Test” result, the fault

“High Gain Tuning” in the controller is confirmed or ruled

out. Similarly, depending on the “Lag Estimation Test”

result, the fault “Sensor Fouling” in the temperature sensor

is confirmed or ruled out. Since CDG does not have a

single fault assumption, either or both of these faults could

be concluded to have occurred depending on the test

results. The diagnostic conductor will inform the operator

and external systems about the identification of these

faults, and select appropriate mitigation actions defined for

these faults for execution.

7. Conclusions

A generic fault propagation modeling approach has been

developed for automating on-line event correlation and

interactive diagnosis. The proposed modeling technique

consists of novel concepts such as defining test and

mitigation actions as part of the model and in-built state

conditional dependencies. Based on this approach, a

software product named CDG is currently being

developed for real-time fault management in large-scale

systems. CDG is part of Gensym’s overall Operations

Expert (OPEX) product line for managing operations

environments.

CDG appropriately combines generic models with

specific domain representation and builds focused specific

models to investigate observed asynchronous events.

Using the specific models, CDG recognizes that a group

of events are correlated to each other, identifies suspected

faults that could have caused the symptoms, and selects

and executes candidate tests and mitigation actions to

resolve the problems. CDG also provides graphical user

interfaces for the development of the models, and for

operator interaction. The test and mitigation actions can

be defined using OPAC graphical procedure development

tool or G2.

References

Finch, F. E., Oyeleye, O. O., and Kramer, M. A., “A

Robust Event-Oriented Methodology for Diagnosis of

Dynamic Process Systems”, Comp. and Chem. Engng.,

14(12), 1379 (1990).

Simpson, W.R., and Sheppard, J.W., System Test and

Diagnosis, Kluwer Academic Publishers, Boston (1994).

Vaidhyanathan, R., and Venkatasubramanian, V.,

"Digraph-Based Models for Automated HAZOP Analysis",

Reliability Engineering and System Safety, 50, 33(1995).

Malin, J. T., Schreckenghost, D. L., and Rhoads, R. W.,

“Extended Real-Time FEAT”, Making Intelligent Systems

Team Players: Additional Case Studies, Section 4., NASA

Technical Memorandum 104786, Johnson Space Center,

Houston, TX (1992).

* Contact Greg Stanley at:
http://gregstanleyandassociates.com/contactinfo/contactinfo.htm

Figure 4. Nitric Acid Cooling System

http://gregstanleyandassociates.com/contactinfo/contactinfo.htm

