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Abstract: CDG (Causal Directed Graph) provides a methodology and framework for real-time fault management
in large-scale systems, addressing the full life cycle of problem identification based on symptoms, diagnostic
testing, and fault isolation, through recovery, as well as protecting the operator from “alarm flooding”. It is based
on generic fault propagation models, tied to an object-oriented domain representation and scalable algorithms.
CDG combines the generality of FMEA models with on-line, asynchronous event correlation and diagnosis. The
architecture of CDG is described and the modeling approach is discussed with examples. Event correlation and
interactive diagnosis using CDG is illustrated through a nitric acid cooling system example.
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1. Introduction and Motivation

Operators of large systems are constantly bombarded by
events in the form of messages and alarms, often resulting
from a small number of root cause problems. Operators
cannot adequately analyze all these events in real-time.
Once events are detected, or arrive from an external
system, operators need a system to:

(1) Filter out redundant events so attention can be
focused on truly new information.

(2) Correlate events - recognize and summarize or group
related messages for presentation to the operator,
even if the root cause is not determined.

(3) Diagnose the root causes of problems, based on
incoming symptoms and test results, automatically
choosing tests to be run proactively in cost order.

(4) Run automated or guided manual tests as soon as
there is evidence of a problem.

(5) Execute automated or guided manual corrective
actions to address symptoms or fix problems.

(6) Communicate results to users and to other computer
applications.

It is evident that fault management goals for the
operations environment include more than just detection
and isolation. These goals are partly addressed by alarm
management, event correlation, or abnormal situation
management applications. However, diagnostic testing
and taking corrective actions in those applications are
usually ad hoc.

In addition, application developers need to provide these
capabilities quickly and reliably, and build re-usable
applications. For practical deployment, installation must
require minimal on-site manual customization. Automatic
reconfiguration is also needed, to account for changes in
equipment, topology, or operating mode.

CDG (Causal Directed Graph) provides a methodology
and framework for real-time fault management in large-
scale systems. CDG addresses these goals with a model-
based framework to standardize development using
generic (class-based) fault propagation models. CDG
automatically looks at secondary data or runs more
elaborate tests only when problems are suspected based
on symptoms. CDG manages operations in domains as
diverse as process plants, communications networks, and
enterprise-wide software applications.

2. Basic Modeling Elements

A fault propagation model in CDG describes the
propagation of failures via potential failure paths in the
system by modeling how fault events will cause other
symptom events and test-result events. It is a directed graph
(digraph) model, with the nodes representing fault,
symptom and test events, and the arcs connecting the nodes
representing the ‘“cause and effect” relationships or
dependencies among these events. An arc from an event
node “A” to event node “B” means, “if event A occurs then
event B will occur (after the time delay specified in the
arc)” or “event A causes event B (after the time delay
specified in the arc)”. The events represented in the model
can take the values, “true”, “false” or “unknown”.

A “Fault” is an underlying independent root cause problem.
Faults have associated corrective or mitigation actions
specified by procedures that can be started against a
specific domain object. Actions can be defined to execute
when a fault is suspected as a cause of the observed
symptoms and when a fault is confirmed. For a fault event,
a true value indicates belief that the fault has occurred and
a false value indicates belief that the fault did not occur. A
fault may be “suspect” if it is a possible cause of observed
symptoms.
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A “Symptom” is an effect of underlying faults in the
monitored system. A measured symptom arrives at CDG,
unsolicited asynchronously from external systems. An
unmeasured symptom status is used for failed sensors, and
convenience in modeling, to represent those effects that are
not measurable, but are important for fault propagation. For
a symptom event, a true value means that the symptom has
occurred and a false value means that the symptom did not
occur within the time delays specified in the arcs.

A “Test” is an observable effect of faults in the monitored
system, like a measured symptom. But, unlike symptoms,
the observation can be requested at any time. Test results
arrive asynchronously (and possibly unsolicited), just like a
symptom. Tests have an associated set of actions applied to
the monitored system, specified as an external procedure
name that can be started against a specific domain object.
Upon request, after some indeterminate amount of time, the
result of the test is returned to CDG as a truth-value. Test
procedures may be fully automated, may simply be a
request to an operator, or a combination of the two. The
true or false value for a test indicates whether the test
passes or fails, respectively. The notion of "test" is
powerful and general, (Simpson and Sheppard, 1994) and
can imbed arbitrarily complex analysis and actions, as long
as it returns a single truth-value.

3. Limitations of Other Diagnostic Techniques

Passive Symptom Monitoring

While desirable, passive symptom monitoring is not
always good enough for fault isolation. Human
troubleshooters know better, performing lab tests, visual
checks, or device built-in-tests. They change controller
tuning, put control loops in manual mode, or run a step
test. The distinction between tests and symptoms can be
used to improve scalability. In large systems, it is
impractical to monitor every variable regularly and often.
Instead key variables are monitored often, generating
symptoms. Once an initial symptom indicates a problem,
additional variables can be examined as tests to complete
diagnosis. Unless tests are represented in a model linking
them to faults, a diagnostic system can’t schedule tests, so
tests are ad-hoc. In addition, tests need to be ranked based
on cost factors such as disruption of the process, resource
cost, or automated vs. manual testing.

Static Pattern Matching and Compiled Models

Static pattern matching (classification) includes neural net
classifiers, Case Based Reasoning (CBR), and simple rule-
based systems. During application development, each
failure is hypothesized, and all expected symptom values
are determined - a failure "signature”. At run time, the
pattern matcher determines the fault(s) with the signature
closest to the observed symptom vector. This captures
model knowledge, but is not robust enough to account for
major dynamic changes in the monitored system, such as
switch positions, controller modes, etc.

Unfortunately, large systems change often and developing
separate pattern matchers for each possible combination of
operating modes or topology wouldn't scale up. A model-
based approach is required. However, if the models are
compiled for use by pattern matchers, recompilation will
still be needed with each change. This introduces delays,
and interrupts ongoing diagnosis.

Systems requiring training from live data (e.g. neural nets
or CBR) have additional problems in handling large
systems, including generalization of results from failures
involving symptoms in multiple objects, learning rarely-
occurring faults, and deciding when old patterns are no
longer relevant.

Time Window Problem

Static pattern matchers require periodic processing of a
"snapshot™ of data or events captured within a time
window. Calculations are started fresh with each time
window - results of previous analyses are not considered.
Time delays between fault occurrence and symptom
arrival cause problems. With only partial symptoms
present, diagnostic conclusions can be wrong. Tuning the
time window size to balance misdiagnosis vs. timely
results is difficult. CDG processes individual events
immediately as they arrive asynchronously, and event
values are remembered until overwritten or timed out,
without the need for a time window.

Reasoning with Missing Symptoms

While using pattern-matching techniques, the absence of a
symptom event may be taken as evidence that the
underlying symptom really isn't present (value of false),
hence associated possible faults aren't present. That can
lead to incorrect diagnosis if there are time delays
between the fault and the symptom, or communications
problems. Evidence based on missing symptoms should
not be used until after the worst-case time delay.
Additionally, when large delays are present, it is desirable
to offer preliminary diagnosis before all symptoms have
arrived. In that case, the only values that should be used
are those for symptoms that have already arrived.

Single Failure Assumption

Many techniques assume there is a single failure. This is
unrealistic in any large system where multiple faults have
already occurred and previous faults continue to cause
symptoms that may overlap with new problems. Static
pattern matchers will fail to handle these situations, since
a combination of faults leads to a pattern of symptoms far
from any single fault’s failure signature. Encoding all 2-
or 3-failure combinations does not scale up. Instead, users
must partition the system into many small diagnostic
subsystems, so that only one failure is likely in a given
subsystem.



Other Modeling Approaches

Process models are often based on algebraic or differential
equations, or qualitative versions such as Signed Directed
Graph (SDG) that represent the propagation of process
variable deviations. These models do not represent test
procedures, relay or PLC logic, frequency domain
information, discrete operational modes (controller
modes, switch positions), or messages (events) from
complex software in alarm systems, shutdown systems,
optimizers, or intelligent instruments. “Smart sensor error
code 307, “backup power starting”, or “no response”
messages don’t fit the paradigm. CDG shares with SDG
an orientation towards asynchronous event processing and
propagation of information, instead of pattern matching.
Like CDG, many SDG implementations have used
generic, class-level models for automating diagnosis
(Finch, et al., 1990), and HAZOP analysis
(Vaidhyanathan and Venkatasubramanian, 1995).

Bayesian Network (BN) is a powerful modeling technique
that can represent generic fault propagation knowledge.
With the additional probability information, BN might
perform better in cases when there are few symptoms or
tests, and where tests are expensive. But BN introduces
unscalable computing complexity and is not needed in
data-rich environments with inexpensive tests.

Design models for "normal” operation are often used in
diagnostic systems. However, faults invalidate design
model assumptions. Pattern matches on observed
deviations from "normal" can be used for diagnosis, but
suffer the problems noted earlier for pattern matching and
compiled models. CDG can accommodate such
quantitative “normal” models in the definition of the tests
and symptoms.

The fault propagation models used in CDG are similar to
the information flow models used for model-based design
for testability and integrated diagnosis (Simpson and
Sheppard, 1994). CDG extends these models for on-line
event correlation, interactive diagnosis and fault
mitigation. Major extensions were a strong event
orientation to handle processing of asynchronous events,
handling symptoms as distinct from tests, run time
selection of tests dependent on previous results (instead of
offline generation of one fixed fault tree for all time),
specification of generic models with specific model
instantiation at run time, graphical input of models and
eliminating the poorly-scaling matrix calculations.

The extended real-time Failure Environment Analysis
Tool (FEAT) (Malin, et al., 1992) used “failure state
information flow” models that are similar to the fault
propagation models used in CDG. But FEAT was limited
due to passive monitoring (no tests), lack of generic
modeling, the use of compiled models and a complex
matrix analysis to identify single and double faults.

Scalability

Scalability (ability to scale a system up to a large number
of objects) is a central issue in fault management in large-
scale systems. CDG addresses this issue through linear
algorithmic complexity, “management by exception” to
only instantiate a specific, localized model at run time
when initial symptoms indicate a possible problem,
models at a high level of abstraction, and an architecture
supporting distribution over multiple computers.

4. Architecture

The architecture of CDG is presented in figure 1. The input
specifications required for CDG are the Generic Fault
Propagation Models and the Specific Domain Model.
Using these specifications, CDG correlates incoming
symptom and test result events, identifies suspect faults and
performs diagnosis by selecting appropriate test and
mitigation actions to resolve the suspect faults. The outputs
from CDG are the diagnostic conclusions and test and
action requests. The various components of CDG are
described in detail in the following sections:

Generic Fault Propagation Models (GFPM)

GFPMs consist of the generic cause-effect relations among
the fault, symptom and test events in the domain objects.
The GFPM of a domain-object class defines the
propagation of failures within its instances and to other
classes of domain objects via relationships. This is a
generic (class-level) “library” of models, independent of
any specific topology of domain objects and relationships
present in any particular system. The GFPMs can be
developed from first-principles models, experience-based
knowledge, or FMEA results. GFPMs are specified via the
developer GUI graphically.

The event nodes and the arcs in the GFPM can be made
conditionally dependent on the states of the domain objects
by defining appropriate conditional methods on the nodes
and the arcs. These conditional methods are evaluated
during event correlation and only the nodes and arcs that
are valid or available for the current states of the domain
objects are used for correlation. In addition, state dependent
methods are defined for the event nodes to calculate the
cost of running a test, the cost of fixing a fault and the cost
of not fixing a fault. The costs evaluated by these methods
are used to rank the candidate tests for diagnosis and the
fault mitigation actions.

Specific Domain Model (SDM)

The SDM is an object-oriented model of the specific
system being monitored. It might model physical
equipment, as well as more abstract entities affecting
system performance, such as controllers or software
applications. The SDM includes objects representing the
monitored domain entities, their connectivity, containment
and other relationships. The SDM can be imported from
external databases or files or can be specified via the
developer GUI.
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Figure 1. The Architecture of CDG

Event Correlator

The Event Correlator correlates asynchronous symptom
and test result events input to CDG using Specific Fault
Propagation Models (SFPMs). SFPM is a fault propagation
model that describes the propagation of fault, symptom and
test events within and across specific domain objects. The
SFPM Builder constructs SFPMs at run time starting from
the incoming events by appropriately combining the
GFPMs and the SDM, just building enough event nodes to
account for possible causes and effects of observed
symptoms. “Event Detectors” are external applications that
monitor and analyze the numerical data trend in the system,
detect and generate appropriate symptom events to be input
to CDG.

The event correlator recognizes that a group of events are
related to each other based on their connectivity criteria in
the SFPM such as the existence of a directed path or the
fact that the events could be caused by common faults.
Then the value of the incoming event is propagated in the
SFPM to infer and predict the values of other events and to
identify suspect faults. OR logic is used by default for the
propagation of event values during correlation. Thus, “the
value of a node is true if the value of one (or more) of its
inputs is true”. Conversely, “if the value of a node is false,
then the value of all of its inputs ought to be false”. Also
using the OR logic, “if the value of an event is true, then all
the upstream fault events become suspects”. Hence, the
event correlator identifies the suspect faults by searching

upstream from the incoming symptom and test result events
with a true value in the SFPM. This information is input to
the Diagnostic Conductor.

During event correlation, if the value of a symptom event is
predicted true by propagation and if the actual symptom
with a true value does not show up within the time delays
specified in the arcs, then the value of the symptom will be
reset to false and re-propagated. Thus, the interim event
correlation and diagnosis will be consistent with observed
events at any time and the final correlation accounts for
symptoms that did not occur. The default time delay is
“infinite”, so by default missing symptoms are not used as
evidence. In addition to the OR logic, AND and NOT logic
propagation relationships among the events could also be
specified in the SFPM.

Diagnostic Conductor

The Diagnostic Conductor resolves the suspected faults by
identifying appropriate candidate tests that when executed
would provide additional information regarding those
faults. These candidate tests are those which are the effects
of the suspect faults. The Test Selector identifies these tests
by searching downstream from the suspect faults in the
SFPM. In the case of an automated test, a request is sent
from CDG to execute the automated test procedure.
Otherwise, the test is displayed on the operator GUI for
approval before execution. The candidate tests are ranked
based on cost criteria such as resource use, disruptiveness,
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or the information value of a test. The test results are
asynchronously input back to the event correlator for
further correlation to reduce the number of suspect faults.

Based on the correlation of the test results, the suspected
faults are either ruled out or concluded to have occurred.
Diagnostic conclusions are output from CDG to the
operator and to other external systems. Whenever CDG
concludes a fault as a suspect or occurred, the Actions
Selector will execute appropriate mitigation actions
specified for the fault. Similar to the test procedures, these
mitigation actions can also be automated procedures or
may require operator intervention. These mitigation actions
can also be ranked based on criteria such as the failure-rate,
the cost of fixing, or the cost of not fixing the faults. The
test and mitigation procedures can be defined using OPAC
(OPerations ~ expert  ACtions) graphical procedure
development tool or G2, external to CDG.

5. GFPM of the Controller and Sensor

A part of the GFPM of the controller and sensor are shown
in figures 2 and 3, respectively. Each event in the GFPMs
has a category attribute that specifies the name of the event
and a class attribute that specifies the class of the domain
object for which the event is defined. These attribute values
are displayed at the side of the event nodes. The square
icon nodes represent faults and the circular icon nodes
represent symptoms and tests. The smaller circular icon
nodes represent symptom-views and test-views, which are
the views of symptoms and tests defined for another class
of domain object. A propagation-relation that specifies the
relation between the domain objects of the event-view node
and the event node is defined on the arc connecting these
nodes.
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In the GFPM of the controller, the fault “High Gain
Tuning” represents the controller gain being set too high.
This fault could cause the measured symptom “Excessive
Cycling of Output Signal” from the controller. In addition,
the measured symptom, “Excessive Cycling of Measured
Variable” in a sensor connected to the controller could
cause the symptom “Excessive Cycling of Input Signal” to
the controller, which in turn could cause the measured
symptom “Excessive Cycling of Output Signal” from the
controller, due to control action.

The “Reduced Gain Test” in the controller is a candidate
test for isolating the fault “High Gain Tuning” in the
controller. This test involves a series of actions wherein the
gain of the controller is reduced and the measured variable
is monitored to determine if the cycling of the measured
variable dissipates. A true or false result for this test will
respectively confirm or rule out the “High Gain Tuning” in
the controller as the fault that might have occurred.
Mitigation actions such as “lowering the gain of the
controller setting” or “switching the controller to manual
mode” are defined for this fault.

In the GFPM of the sensor, the fault “Sensor Fouling”
represents the accumulation of material around the
thermowell of the sensor. This fault could cause the
unmeasured symptom “Excessive Measurement Lag” in the
sensor, which in turn could cause the measured symptom
“Excessive Cycling of Measured Variable” in the sensor.
The “Lag Estimation Test” in a controller connected to the
sensor is a candidate test for isolating this fault. This test
involves a series of actions wherein the controller is
switched to manual mode from automatic mode, and then a
step response test is performed by changing the
manipulated variable and estimating the time-constant and
the lag time by monitoring the effect on the measured
variable. If the time-constant and the lag time of the sensor
measurement are significantly higher than their normal
values, the result of this test is true, else false. A true or
false result for this test will respectively confirm or rule out
the “Sensor Fouling” in the sensor as the fault that might
have occurred. Mitigation actions such as “cleaning the
thermowell of the sensor” or “replacing the sensor” are
defined for this fault.

6. Nitric Acid Cooling System Example

In this section, event correlation and diagnosis using CDG
is illustrated through a nitric acid cooling system example
SDM shown in figure 4. In this system, a feedback
temperature controller controls the temperature of nitric
acid to a reactor by manipulating the coolant flow via a
flow control valve. In addition to the GFPM of the
controller and sensor described in the previous section,
generic models for the flow control valve and heat
exchanger are defined in CDG. The initial measured
symptom, “Excessive Cycling of Measured Temperature”
true, in the sensor will be detected by an event detector and
this event will be input to CDG. Starting from this



symptom, CDG will build the SFPM by appropriately
combining the SDM and the GFPMs in the model library.
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Figure 4. Nitric Acid Cooling System

By propagating the true value of the “Excessive Cycling of

Measured Temperature” symptom in the SFPM, the CDG
event correlator will identify the faults “High Gain Tuning”
in the temperature controller and “Sensor Fouling” around
the temperature sensor thermowell as the suspected root
causes (assuming that the hot nitric acid inlet temperature
is a measured variable and the corresponding possible
cause “Excessive Cycling of Hot Nitric Acid Inlet
Temperature” was already eliminated). This information
will be fed to the CDG diagnostic conductor, which will
then identify “Reduced Gain Test” and “Lag Estimation
Test” in the controller as the respective candidate tests for
resolving the suspect faults in cost order. The operator or
automated procedures can then execute these test actions,
and the test results are asynchronously input back to CDG.
The CDG event correlator will propagate those test results
in the SFPM to confirm or rule out the suspect faults.

Depending on the “Reduced Gain Test” result, the fault
“High Gain Tuning” in the controller is confirmed or ruled
out. Similarly, depending on the “Lag Estimation Test”
result, the fault “Sensor Fouling” in the temperature sensor
is confirmed or ruled out. Since CDG does not have a
single fault assumption, either or both of these faults could
be concluded to have occurred depending on the test
results. The diagnostic conductor will inform the operator
and external systems about the identification of these
faults, and select appropriate mitigation actions defined for
these faults for execution.

7. Conclusions

A generic fault propagation modeling approach has been
developed for automating on-line event correlation and
interactive diagnosis. The proposed modeling technique
consists of novel concepts such as defining test and
mitigation actions as part of the model and in-built state
conditional dependencies. Based on this approach, a
software product named CDG is currently being
developed for real-time fault management in large-scale
systems. CDG is part of Gensym’s overall Operations
Expert (OPEX) product line for managing operations
environments.

CDG appropriately combines generic models with
specific domain representation and builds focused specific
models to investigate observed asynchronous events.
Using the specific models, CDG recognizes that a group
of events are correlated to each other, identifies suspected
faults that could have caused the symptoms, and selects
and executes candidate tests and mitigation actions to
resolve the problems. CDG also provides graphical user
interfaces for the development of the models, and for
operator interaction. The test and mitigation actions can
be defined using OPAC graphical procedure development
tool or G2.
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