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Abstract: CDG (Causal Directed Graph) provides a methodology and framework for real-time fault management 

in large-scale systems, addressing the full life cycle of problem identification based on symptoms, diagnostic 

testing, and fault isolation, through recovery, as well as protecting the operator from “alarm flooding”.  It is based 

on generic fault propagation models, tied to an object-oriented domain representation and scalable algorithms.  

CDG combines the generality of FMEA models with on-line, asynchronous event correlation and diagnosis. The 

architecture of CDG is described and the modeling approach is discussed with examples. Event correlation and 

interactive diagnosis using CDG is illustrated through a nitric acid cooling system example. 

 

Keywords: diagnosis, fault propagation model, digraph, knowledge engineering, automation, real-time systems, 

failure and recovery, FMEA, test planning 

 

1. Introduction and Motivation 

Operators of large systems are constantly bombarded by 

events in the form of messages and alarms, often resulting 

from a small number of root cause problems. Operators 

cannot adequately analyze all these events in real-time. 

Once events are detected, or arrive from an external 

system, operators need a system to:  

 

(1) Filter out redundant events so attention can be 

focused on truly new information. 

(2) Correlate events - recognize and summarize or group 

related messages for presentation to the operator, 

even if the root cause is not determined. 

(3) Diagnose the root causes of problems, based on 

incoming symptoms and test results, automatically 

choosing tests to be run proactively in cost order. 

(4) Run automated or guided manual tests as soon as 

there is evidence of a problem. 

(5) Execute automated or guided manual corrective 

actions to address symptoms or fix problems. 

(6) Communicate results to users and to other computer 

applications. 

 

It is evident that fault management goals for the 

operations environment include more than just detection 

and isolation. These goals are partly addressed by alarm 

management, event correlation, or abnormal situation 

management applications. However, diagnostic testing 

and taking corrective actions in those applications are 

usually ad hoc.  

 

In addition, application developers need to provide these 

capabilities quickly and reliably, and build re-usable 

applications. For practical deployment, installation must 

require minimal on-site manual customization.  Automatic 

reconfiguration is also needed, to account for changes in 

equipment, topology, or operating mode. 

 

CDG (Causal Directed Graph) provides a methodology 

and framework for real-time fault management in large-

scale systems. CDG addresses these goals with a model-

based framework to standardize development using 

generic (class-based) fault propagation models. CDG 

automatically looks at secondary data or runs more 

elaborate tests only when problems are suspected based 

on symptoms. CDG manages operations in domains as 

diverse as process plants, communications networks, and 

enterprise-wide software applications. 

2. Basic Modeling Elements 

A fault propagation model in CDG describes the 

propagation of failures via potential failure paths in the 

system by modeling how fault events will cause other 

symptom events and test-result events. It is a directed graph 

(digraph) model, with the nodes representing fault, 

symptom and test events, and the arcs connecting the nodes 

representing the “cause and effect” relationships or 

dependencies among these events. An arc from an event 

node “A” to event node “B” means, “if event A occurs then 

event B will occur (after the time delay specified in the 

arc)” or “event A causes event B (after the time delay 

specified in the arc)”. The events represented in the model 

can take the values,  “true”, “false” or “unknown”.  

 

A “Fault” is an underlying independent root cause problem. 

Faults have associated corrective or mitigation actions 

specified by procedures that can be started against a 

specific domain object. Actions can be defined to execute 

when a fault is suspected as a cause of the observed 

symptoms and when a fault is confirmed. For a fault event, 

a true value indicates belief that the fault has occurred and 

a false value indicates belief that the fault did not occur. A 

fault may be “suspect” if it is a possible cause of observed 

symptoms. 
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 A “Symptom” is an effect of underlying faults in the 

monitored system. A measured symptom arrives at CDG, 

unsolicited asynchronously from external systems. An 

unmeasured symptom status is used for failed sensors, and 

convenience in modeling, to represent those effects that are 

not measurable, but are important for fault propagation. For 

a symptom event, a true value means that the symptom has 

occurred and a false value means that the symptom did not 

occur within the time delays specified in the arcs. 

 

A “Test” is an observable effect of faults in the monitored 

system, like a measured symptom. But, unlike symptoms, 

the observation can be requested at any time.  Test results 

arrive asynchronously (and possibly unsolicited), just like a 

symptom. Tests have an associated set of actions applied to 

the monitored system, specified as an external procedure 

name that can be started against a specific domain object.  

Upon request, after some indeterminate amount of time, the 

result of the test is returned to CDG as a truth-value. Test 

procedures may be fully automated, may simply be a 

request to an operator, or a combination of the two. The 

true or false value for a test indicates whether the test 

passes or fails, respectively. The notion of "test" is 

powerful and general, (Simpson and Sheppard, 1994) and 

can imbed arbitrarily complex analysis and actions, as long 

as it returns a single truth-value. 

3. Limitations of Other Diagnostic Techniques 

Passive Symptom Monitoring 

While desirable, passive symptom monitoring is not 

always good enough for fault isolation. Human 

troubleshooters know better, performing lab tests, visual 

checks, or device built-in-tests.  They change controller 

tuning, put control loops in manual mode, or run a step 

test.  The distinction between tests and symptoms can be 

used to improve scalability.  In large systems, it is 

impractical to monitor every variable regularly and often.  

Instead key variables are monitored often, generating 

symptoms. Once an initial symptom indicates a problem, 

additional variables can be examined as tests to complete 

diagnosis. Unless tests are represented in a model linking 

them to faults, a diagnostic system can’t schedule tests, so 

tests are ad-hoc. In addition, tests need to be ranked based 

on cost factors such as disruption of the process, resource 

cost, or automated vs. manual testing.   

Static Pattern Matching and Compiled Models 

Static pattern matching (classification) includes neural net 

classifiers, Case Based Reasoning (CBR), and simple rule-

based systems. During application development, each 

failure is hypothesized, and all expected symptom values 

are determined - a failure "signature".  At run time, the 

pattern matcher determines the fault(s) with the signature 

closest to the observed symptom vector.  This captures 

model knowledge, but is not robust enough to account for 

major dynamic changes in the monitored system, such as 

switch positions, controller modes, etc.  

Unfortunately, large systems change often and developing 

separate pattern matchers for each possible combination of 

operating modes or topology wouldn't scale up. A model-

based approach is required. However, if the models are 

compiled for use by pattern matchers, recompilation will 

still be needed with each change. This introduces delays, 

and interrupts ongoing diagnosis. 

 

Systems requiring training from live data (e.g. neural nets 

or CBR) have additional problems in handling large 

systems, including generalization of results from failures 

involving symptoms in multiple objects, learning rarely-

occurring faults, and deciding when old patterns are no 

longer relevant.  

Time Window Problem 

Static pattern matchers require periodic processing of a 

"snapshot" of data or events captured within a time 

window. Calculations are started fresh with each time 

window - results of previous analyses are not considered. 

Time delays between fault occurrence and symptom 

arrival cause problems.  With only partial symptoms 

present, diagnostic conclusions can be wrong.  Tuning the 

time window size to balance misdiagnosis vs. timely 

results is difficult. CDG processes individual events 

immediately as they arrive asynchronously, and event 

values are remembered until overwritten or timed out, 

without the need for a time window.  

Reasoning with Missing Symptoms 

While using pattern-matching techniques, the absence of a 

symptom event may be taken as evidence that the 

underlying symptom really isn't present (value of false), 

hence associated possible faults aren't present. That can 

lead to incorrect diagnosis if there are time delays 

between the fault and the symptom, or communications 

problems. Evidence based on missing symptoms should 

not be used until after the worst-case time delay.  

Additionally, when large delays are present, it is desirable 

to offer preliminary diagnosis before all symptoms have 

arrived.  In that case, the only values that should be used 

are those for symptoms that have already arrived.   

Single Failure Assumption 

Many techniques assume there is a single failure. This is 

unrealistic in any large system where multiple faults have 

already occurred and previous faults continue to cause 

symptoms that may overlap with new problems. Static 

pattern matchers will fail to handle these situations, since 

a combination of faults leads to a pattern of symptoms far 

from any single fault’s failure signature.  Encoding all 2- 

or 3-failure combinations does not scale up.  Instead, users 

must partition the system into many small diagnostic 

subsystems, so that only one failure is likely in a given 

subsystem. 
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Other Modeling Approaches  

Process models are often based on algebraic or differential 

equations, or qualitative versions such as Signed Directed 

Graph (SDG) that represent the propagation of process 

variable deviations. These models do not represent test 

procedures, relay or PLC logic, frequency domain 

information, discrete operational modes (controller 

modes, switch positions), or messages (events) from 

complex software in alarm systems, shutdown systems, 

optimizers, or intelligent instruments. “Smart sensor error 

code 30”, “backup power starting”, or “no response” 

messages don’t fit the paradigm.  CDG shares with SDG 

an orientation towards asynchronous event processing and 

propagation of information, instead of pattern matching. 

Like CDG, many SDG implementations have used 

generic, class-level models for automating diagnosis 

(Finch, et al., 1990), and HAZOP analysis 

(Vaidhyanathan and Venkatasubramanian, 1995). 

 

Bayesian Network (BN) is a powerful modeling technique 

that can represent generic fault propagation knowledge. 

With the additional probability information, BN might 

perform better in cases when there are few symptoms or 

tests, and where tests are expensive. But BN introduces 

unscalable computing complexity and is not needed in 

data-rich environments with inexpensive tests. 

 

Design models for "normal" operation are often used in 

diagnostic systems.  However, faults invalidate design 

model assumptions. Pattern matches on observed 

deviations from "normal" can be used for diagnosis, but 

suffer the problems noted earlier for pattern matching and 

compiled models. CDG can accommodate such 

quantitative “normal” models in the definition of the tests 

and symptoms.   

 

The fault propagation models used in CDG are similar to 

the information flow models used for model-based design 

for testability and integrated diagnosis (Simpson and 

Sheppard, 1994). CDG extends these models for on-line 

event correlation, interactive diagnosis and fault 

mitigation. Major extensions were a strong event 

orientation to handle processing of asynchronous events, 

handling symptoms as distinct from tests, run time 

selection of tests dependent on previous results (instead of 

offline generation of one fixed fault tree for all time), 

specification of generic models with specific model 

instantiation at run time, graphical input of models and 

eliminating the poorly-scaling matrix calculations.  

 

The extended real-time Failure Environment Analysis 

Tool (FEAT) (Malin, et al., 1992) used “failure state 

information flow” models that are similar to the fault 

propagation models used in CDG.  But FEAT was limited 

due to passive monitoring (no tests), lack of generic 

modeling, the use of compiled models and a complex 

matrix analysis to identify single and double faults. 

Scalability 

Scalability (ability to scale a system up to a large number 

of objects) is a central issue in fault management in large-

scale systems.  CDG addresses this issue through linear 

algorithmic complexity, “management by exception” to 

only instantiate a specific, localized model at run time 

when initial symptoms indicate a possible problem, 

models at a high level of abstraction, and an architecture 

supporting distribution over multiple computers.  

4. Architecture 

The architecture of CDG is presented in figure 1. The input 

specifications required for CDG are the Generic Fault 

Propagation Models and the Specific Domain Model. 

Using these specifications, CDG correlates incoming 

symptom and test result events, identifies suspect faults and 

performs diagnosis by selecting appropriate test and 

mitigation actions to resolve the suspect faults. The outputs 

from CDG are the diagnostic conclusions and test and 

action requests. The various components of CDG are 

described in detail in the following sections:   

Generic Fault Propagation Models (GFPM)  

GFPMs consist of the generic cause-effect relations among 

the fault, symptom and test events in the domain objects. 

The GFPM of a domain-object class defines the 

propagation of failures within its instances and to other 

classes of domain objects via relationships. This is a 

generic (class-level) “library” of models, independent of 

any specific topology of domain objects and relationships 

present in any particular system. The GFPMs can be 

developed from first-principles models, experience-based 

knowledge, or FMEA results. GFPMs are specified via the 

developer GUI graphically.  

 

The event nodes and the arcs in the GFPM can be made 

conditionally dependent on the states of the domain objects 

by defining appropriate conditional methods on the nodes 

and the arcs. These conditional methods are evaluated 

during event correlation and only the nodes and arcs that 

are valid or available for the current states of the domain 

objects are used for correlation. In addition, state dependent 

methods are defined for the event nodes to calculate the 

cost of running a test, the cost of fixing a fault and the cost 

of not fixing a fault. The costs evaluated by these methods 

are used to rank the candidate tests for diagnosis and the 

fault mitigation actions.  

Specific Domain Model (SDM) 

The SDM is an object-oriented model of the specific 

system being monitored. It might model physical 

equipment, as well as more abstract entities affecting 

system performance, such as controllers or software 

applications. The SDM includes objects representing the 

monitored domain entities, their connectivity, containment 

and other relationships. The SDM can be imported from 

external databases or files or can be specified via the 

developer GUI.  
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Event Correlator  

The Event Correlator correlates asynchronous symptom 

and test result events input to CDG using Specific Fault 

Propagation Models (SFPMs). SFPM is a fault propagation 

model that describes the propagation of fault, symptom and 

test events within and across specific domain objects. The 

SFPM Builder constructs SFPMs at run time starting from 

the incoming events by appropriately combining the 

GFPMs and the SDM, just building enough event nodes to 

account for possible causes and effects of observed 

symptoms. “Event Detectors” are external applications that 

monitor and analyze the numerical data trend in the system, 

detect and generate appropriate symptom events to be input 

to CDG. 

 

The event correlator recognizes that a group of events are 

related to each other based on their connectivity criteria in 

the SFPM such as the existence of a directed path or the 

fact that the events could be caused by common faults. 

Then the value of the incoming event is propagated in the 

SFPM to infer and predict the values of other events and to 

identify suspect faults. OR logic is used by default for the 

propagation of event values during correlation. Thus, “the 

value of a node is true if the value of one (or more) of its 

inputs is true”. Conversely, “if the value of a node is false, 

then the value of all of its inputs ought to be false”. Also 

using the OR logic, “if the value of an event is true, then all 

the upstream fault events become suspects”. Hence, the 

event correlator identifies the suspect faults by searching  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

upstream from the incoming symptom and test result events 

with a true value in the SFPM. This information is input to 

the Diagnostic Conductor. 

 

During event correlation, if the value of a symptom event is 

predicted true by propagation and if the actual symptom 

with a true value does not show up within the time delays 

specified in the arcs, then the value of the symptom will be 

reset to false and re-propagated. Thus, the interim event 

correlation and diagnosis will be consistent with observed 

events at any time and the final correlation accounts for 

symptoms that did not occur. The default time delay is 

“infinite”, so by default missing symptoms are not used as 

evidence. In addition to the OR logic, AND and NOT logic 

propagation relationships among the events could also be 

specified in the SFPM.   

Diagnostic Conductor 

The Diagnostic Conductor resolves the suspected faults by 

identifying appropriate candidate tests that when executed 

would provide additional information regarding those 

faults. These candidate tests are those which are the effects 

of the suspect faults. The Test Selector identifies these tests 

by searching downstream from the suspect faults in the 

SFPM. In the case of an automated test, a request is sent 

from CDG to execute the automated test procedure. 

Otherwise, the test is displayed on the operator GUI for 

approval before execution. The candidate tests are ranked 

based on cost criteria such as resource use, disruptiveness, 
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Figure 1. The Architecture of CDG  
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or the information value of a test. The test results are 

asynchronously input back to the event correlator for 

further correlation to reduce the number of suspect faults.  

 

Based on the correlation of the test results, the suspected 

faults are either ruled out or concluded to have occurred. 

Diagnostic conclusions are output from CDG to the 

operator and to other external systems. Whenever CDG 

concludes a fault as a suspect or occurred, the Actions 

Selector will execute appropriate mitigation actions 

specified for the fault. Similar to the test procedures, these 

mitigation actions can also be automated procedures or 

may require operator intervention. These mitigation actions 

can also be ranked based on criteria such as the failure-rate, 

the cost of fixing, or the cost of not fixing the faults. The 

test and mitigation procedures can be defined using OPAC 

(OPerations expert ACtions) graphical procedure 

development tool or G2, external to CDG. 

5. GFPM of the Controller and Sensor 

A part of the GFPM of the controller and sensor are shown 

in figures 2 and 3, respectively. Each event in the GFPMs 

has a category attribute that specifies the name of the event 

and a class attribute that specifies the class of the domain 

object for which the event is defined. These attribute values 

are displayed at the side of the event nodes. The square 

icon nodes represent faults and the circular icon nodes 

represent symptoms and tests. The smaller circular icon 

nodes represent symptom-views and test-views, which are 

the views of symptoms and tests defined for another class 

of domain object. A propagation-relation that specifies the 

relation between the domain objects of the event-view node 

and the event node is defined on the arc connecting these 

nodes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the GFPM of the controller, the fault “High Gain 

Tuning” represents the controller gain being set too high. 

This fault could cause the measured symptom “Excessive 

Cycling of Output Signal” from the controller. In addition, 

the measured symptom, “Excessive Cycling of Measured 

Variable” in a sensor connected to the controller could 

cause the symptom “Excessive Cycling of Input Signal” to 

the controller, which in turn could cause the measured 

symptom “Excessive Cycling of Output Signal” from the 

controller, due to control action.  

 

The “Reduced Gain Test” in the controller is a candidate 

test for isolating the fault “High Gain Tuning” in the 

controller. This test involves a series of actions wherein the 

gain of the controller is reduced and the measured variable 

is monitored to determine if the cycling of the measured 

variable dissipates. A true or false result for this test will 

respectively confirm or rule out the “High Gain Tuning” in 

the controller as the fault that might have occurred. 

Mitigation actions such as “lowering the gain of the 

controller setting” or “switching the controller to manual 

mode” are defined for this fault.  

 

In the GFPM of the sensor, the fault “Sensor Fouling” 

represents the accumulation of material around the 

thermowell of the sensor. This fault could cause the 

unmeasured symptom “Excessive Measurement Lag” in the 

sensor, which in turn could cause the measured symptom 

“Excessive Cycling of Measured Variable” in the sensor. 

The “Lag Estimation Test” in a controller connected to the 

sensor is a candidate test for isolating this fault. This test 

involves a series of actions wherein the controller is 

switched to manual mode from automatic mode, and then a 

step response test is performed by changing the 

manipulated variable and estimating the time-constant and 

the lag time by monitoring the effect on the measured 

variable. If the time-constant and the lag time of the sensor 

measurement are significantly higher than their normal 

values, the result of this test is true, else false. A true or 

false result for this test will respectively confirm or rule out 

the “Sensor Fouling” in the sensor as the fault that might 

have occurred. Mitigation actions such as “cleaning the 

thermowell of the sensor” or “replacing the sensor” are 

defined for this fault.  

6. Nitric Acid Cooling System Example 

In this section, event correlation and diagnosis using CDG 

is illustrated through a nitric acid cooling system example 

SDM shown in figure 4. In this system, a feedback 

temperature controller controls the temperature of nitric 

acid to a reactor by manipulating the coolant flow via a 

flow control valve. In addition to the GFPM of the 

controller and sensor described in the previous section, 

generic models for the flow control valve and heat 

exchanger are defined in CDG. The initial measured 

symptom,  “Excessive Cycling of Measured Temperature” 

true, in the sensor will be detected by an event detector and 

this event will be input to CDG. Starting from this 

Figure 2. GFPM of the Controller  

Figure 3. GFPM of the Sensor 
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symptom, CDG will build the SFPM by appropriately 

combining the SDM and the GFPMs in the model library.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By propagating the true value of the “Excessive Cycling of 

Measured Temperature” symptom in the SFPM, the CDG 

event correlator will identify the faults “High Gain Tuning” 

in the temperature controller and “Sensor Fouling” around 

the temperature sensor thermowell as the suspected root 

causes (assuming that the hot nitric acid inlet temperature 

is a measured variable and the corresponding possible 

cause “Excessive Cycling of Hot Nitric Acid Inlet 

Temperature” was already eliminated). This information 

will be fed to the CDG diagnostic conductor, which will 

then identify “Reduced Gain Test” and “Lag Estimation 

Test” in the controller as the respective candidate tests for 

resolving the suspect faults in cost order. The operator or 

automated procedures can then execute these test actions, 

and the test results are asynchronously input back to CDG. 

The CDG event correlator will propagate those test results 

in the SFPM to confirm or rule out the suspect faults.  

 

Depending on the “Reduced Gain Test” result, the fault 

“High Gain Tuning” in the controller is confirmed or ruled 

out. Similarly, depending on the “Lag Estimation Test” 

result, the fault “Sensor Fouling” in the temperature sensor 

is confirmed or ruled out. Since CDG does not have a 

single fault assumption, either or both of these faults could 

be concluded to have occurred depending on the test 

results. The diagnostic conductor will inform the operator 

and external systems about the identification of these 

faults, and select appropriate mitigation actions defined for 

these faults for execution.  

7. Conclusions 

A generic fault propagation modeling approach has been 

developed for automating on-line event correlation and 

interactive diagnosis. The proposed modeling technique 

consists of novel concepts such as defining test and 

mitigation actions as part of the model and in-built state 

conditional dependencies. Based on this approach, a 

software product named CDG is currently being 

developed for real-time fault management in large-scale 

systems. CDG is part of Gensym’s overall Operations 

Expert (OPEX) product line for managing operations 

environments.  

 

CDG appropriately combines generic models with 

specific domain representation and builds focused specific 

models to investigate observed asynchronous events. 

Using the specific models, CDG recognizes that a group 

of events are correlated to each other, identifies suspected 

faults that could have caused the symptoms, and selects 

and executes candidate tests and mitigation actions to 

resolve the problems. CDG also provides graphical user 

interfaces for the development of the models, and for 

operator interaction. The test and mitigation actions can 

be defined using OPAC graphical procedure development 

tool or G2.  

References 

Finch, F. E., Oyeleye, O. O., and Kramer, M. A., “A 

Robust Event-Oriented Methodology for Diagnosis of 

Dynamic Process Systems”, Comp. and Chem. Engng., 

14(12), 1379 (1990). 

 

Simpson, W.R., and Sheppard, J.W., System Test and 

Diagnosis,  Kluwer Academic Publishers, Boston  (1994). 

 

Vaidhyanathan, R., and Venkatasubramanian, V., 

"Digraph-Based Models for Automated HAZOP Analysis", 

Reliability Engineering and System Safety, 50, 33(1995). 

 

Malin, J. T., Schreckenghost, D. L., and Rhoads, R. W.,  

“Extended Real-Time FEAT”, Making Intelligent Systems 

Team Players: Additional Case Studies, Section 4., NASA 

Technical Memorandum 104786, Johnson Space Center, 

Houston, TX (1992). 

 

 

 

 

 

 

 

 

 

 

* Contact Greg Stanley at:  
http://gregstanleyandassociates.com/contactinfo/contactinfo.htm  

Figure 4. Nitric Acid Cooling System 
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